论文标题

四足机器人的分层自适应机车操作控制

Hierarchical Adaptive Loco-manipulation Control for Quadruped Robots

论文作者

Sombolestan, Mohsen, Nguyen, Quan

论文摘要

腿部机器人在驾驶不平坦的地形方面表现出显着的优势。但是,实现四倍机器人的有效运动和操纵任务仍然具有挑战性。另外,在这些问题中,机器人通常未知对象和地形参数。因此,本文提出了一个分层自适应控制框架,该框架使腿部机器人能够执行机车操作任务,而无需对物体质量,摩擦系数或地形的斜率进行任何给定的假设。在我们的方法中,我们首先提出一种自适应操纵控制,以调节接触力,以操纵未知地形上的未知物体。然后,我们引入了一个统一的模型预测控制(MPC),以考虑机器人动力学中的操纵力。因此,提出的MPC框架可以有效地调节机器人与物体之间的相互作用力,同时保持机器人平衡。我们提出的方法的实验验证成功地在Unitree A1机器人上进行了,使其可以操纵未知的时间变化负载,最高$ 7 $ $ kg $($ 60 \%的机器人重量)。此外,我们的框架可以快速适应未知斜率(最高$ 20^\ circ $)或具有不同摩擦系数的不同表面。

Legged robots have shown remarkable advantages in navigating uneven terrain. However, realizing effective locomotion and manipulation tasks on quadruped robots is still challenging. In addition, object and terrain parameters are generally unknown to the robot in these problems. Therefore, this paper proposes a hierarchical adaptive control framework that enables legged robots to perform loco-manipulation tasks without any given assumption on the object's mass, the friction coefficient, or the slope of the terrain. In our approach, we first present an adaptive manipulation control to regulate the contact force to manipulate an unknown object on unknown terrain. We then introduce a unified model predictive control (MPC) for loco-manipulation that takes into account the manipulation force in our robot dynamics. The proposed MPC framework thus can effectively regulate the interaction force between the robot and the object while keeping the robot balance. Experimental validation of our proposed approach is successfully conducted on a Unitree A1 robot, allowing it to manipulate an unknown time-varying load up to $7$ $kg$ ($60\%$ of the robot's weight). Moreover, our framework enables fast adaptation to unknown slopes (up to $20^\circ$) or different surfaces with different friction coefficients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源