论文标题

CYRSOXS:一种用于极化谐振软X射线散射(P-RSOXS)的GPU加速虚拟仪器

CyRSoXS: A GPU-accelerated virtual instrument for Polarized Resonant Soft X-ray Scattering (P-RSoXS)

论文作者

Saurabh, Kumar, Dudenas, Peter J., Gann, Eliot, Reynolds, Veronica G., Mukherjee, Subhrangsu, Sunday, Daniel, Martin, Tyler B., Beaucage, Peter A., Chabinyc, Michael L., DeLongchamp, Dean M., Krishnamurthy, Adarsh, Ganapathysubramanian, Baskar

论文摘要

极化谐振软X射线散射(P-RSOXS)已成为一种强大的基于同步加速器的工具,该工具结合了X射线散射和X射线光谱的原理。 P-RSOXS对诸如聚合物和生物材料等软材料的分子方向和化学异质性具有独特的敏感性。从P-RSOXS模式数据中定量提取信息的定量提取是具有挑战性的,因为散射过程源自样品属性,必须表示为能量依赖性的三维张量,其在纳米表到亚纳米长度尺度的异质性。我们通过开发一种使用GPU的开源虚拟仪器来克服这一挑战,该工具使用GPU从具有纳米级分辨率的真实空间材料表示中模拟P-RSOXS模式。我们的计算框架CYRSOXS(https://github.com/usnistgov/cyrsoxs)旨在最大化GPU性能。我们通过验证广泛的测试用例,包括分析解决方案和数值比较,证明了我们的方法的准确性和鲁棒性,相对于当前的最新仿真软件,这表明了三个订单以上的加速。这样的快速模拟打开了以前在计算上不可行的各种应用程序,包括(a)模式拟合,(b)与操作分析,数据探索和决策支持的物理仪器共同模拟,(c)数据创建和集成机器学习工作流程,以及(d)在多模式数据吸收中利用中的(d)利用。最后,我们通过使用Pybind将Cyrsoxs暴露于Python,从最终用户抽象了计算框架的复杂性。这消除了对大规模参数探索和逆设计的I/O要求,并通过与Python生态系统无缝集成(https://github.com/usnistgov/nrss)来使用法民主化。

Polarized Resonant Soft X-ray scattering (P-RSoXS) has emerged as a powerful synchrotron-based tool that combines principles of X-ray scattering and X-ray spectroscopy. P-RSoXS provides unique sensitivity to molecular orientation and chemical heterogeneity in soft materials such as polymers and biomaterials. Quantitative extraction of orientation information from P-RSoXS pattern data is challenging because the scattering processes originate from sample properties that must be represented as energy-dependent three-dimensional tensors with heterogeneities at nanometer to sub-nanometer length scales. We overcome this challenge by developing an open-source virtual instrument that uses GPUs to simulate P-RSoXS patterns from real-space material representations with nanoscale resolution. Our computational framework CyRSoXS (https://github.com/usnistgov/cyrsoxs) is designed to maximize GPU performance. We demonstrate the accuracy and robustness of our approach by validating against an extensive set of test cases, which include both analytical solutions and numerical comparisons, demonstrating a speedup of over three orders relative to the current state-of-the-art simulation software. Such fast simulations open up a variety of applications that were previously computationally infeasible, including (a) pattern fitting, (b) co-simulation with the physical instrument for operando analytics, data exploration, and decision support, (c) data creation and integration into machine learning workflows, and (d) utilization in multi-modal data assimilation approaches. Finally, we abstract away the complexity of the computational framework from the end-user by exposing CyRSoXS to Python using Pybind. This eliminates I/O requirements for large-scale parameter exploration and inverse design, and democratizes usage by enabling seamless integration with a Python ecosystem (https://github.com/usnistgov/nrss).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源