论文标题
基于EEG的图像特征提取用于视觉分类的图像特征提取
EEG-based Image Feature Extraction for Visual Classification using Deep Learning
论文作者
论文摘要
尽管能够隔离视觉数据,但人类花了一些时间来检查一块,更不用说数千或数百万个样本了。深度学习模型在现代计算的帮助下有效地处理了相当大的信息。但是,他们可疑的决策过程引起了相当大的关注。最近的研究已经确定了一种新的方法,可以从EEG信号中提取图像特征,并将其与标准图像特征相结合。这些方法使深度学习模型更容易解释,还可以使模型更快地收敛,以减少样本。受近期研究的启发,我们开发了一种编码脑电图信号作为图像的有效方法,以促进使用深度学习模型对大脑信号的更微妙的理解。在此类编码方法中,我们使用两个变体对六个受试者的分层数据集的基准精度为70%的39个图像类别对应的编码EEG信号分类,这显着高于现有工作。与纯净的深度学习方法的精度稍好相比,我们的图像分类方法具有共同的脑电图特征的精度为82%。然而,它证明了该理论的生存能力。
While capable of segregating visual data, humans take time to examine a single piece, let alone thousands or millions of samples. The deep learning models efficiently process sizeable information with the help of modern-day computing. However, their questionable decision-making process has raised considerable concerns. Recent studies have identified a new approach to extract image features from EEG signals and combine them with standard image features. These approaches make deep learning models more interpretable and also enables faster converging of models with fewer samples. Inspired by recent studies, we developed an efficient way of encoding EEG signals as images to facilitate a more subtle understanding of brain signals with deep learning models. Using two variations in such encoding methods, we classified the encoded EEG signals corresponding to 39 image classes with a benchmark accuracy of 70% on the layered dataset of six subjects, which is significantly higher than the existing work. Our image classification approach with combined EEG features achieved an accuracy of 82% compared to the slightly better accuracy of a pure deep learning approach; nevertheless, it demonstrates the viability of the theory.