论文标题
法律告知代码:一种法律信息学方法,将人工智能与人类保持一致
Law Informs Code: A Legal Informatics Approach to Aligning Artificial Intelligence with Humans
论文作者
论文摘要
目前,我们无法以可靠地指导AI行为的方式指定人类的目标和社会价值观。立法和法律解释形成了一种计算引擎,将不透明的人类价值转换为清晰的指令。 “法律告知法规”是将法律知识和推理嵌入AI的研究议程。与法律合同当事方的方式类似,无法预见其未来关系的每一个潜在偶然性,而立法者无法预测其提议的法案将被应用的所有情况,我们无法实行指定可以证明可以指导良好AI行为的规则。法律理论和实践已经开发了各种工具来解决这些规范问题。例如,法律标准允许人类发展共同的理解并适应新的情况。与法律的更多平淡无法的使用相比(例如,通过制裁的威胁威慑不良行为的一种威慑力量),以表达人类如何传达其目标以及社会的价值观,法律为代码提供了信息。 我们描述了法律程序产生的数据(合法化方法,法定解释方法,合同制图,法律标准的应用,法律推理等)如何促进固有含糊的人类目标的强大规范。这增加了人类的一致性和AI的局部有用性。为了使社会对齐,我们提出了一个理解法律作为多代理一致性哲学的框架。尽管法律部分反映了历史上有一定的政治权力(因此不是公民偏好的完美汇总),如果正确解析,其蒸馏却提供了对可用社会价值观的最合法计算理解。如果法律最终告知强大的人工智能,那么参与审议的政治进程来改善法律会具有更大的意义。
We are currently unable to specify human goals and societal values in a way that reliably directs AI behavior. Law-making and legal interpretation form a computational engine that converts opaque human values into legible directives. "Law Informs Code" is the research agenda embedding legal knowledge and reasoning in AI. Similar to how parties to a legal contract cannot foresee every potential contingency of their future relationship, and legislators cannot predict all the circumstances under which their proposed bills will be applied, we cannot ex ante specify rules that provably direct good AI behavior. Legal theory and practice have developed arrays of tools to address these specification problems. For instance, legal standards allow humans to develop shared understandings and adapt them to novel situations. In contrast to more prosaic uses of the law (e.g., as a deterrent of bad behavior through the threat of sanction), leveraged as an expression of how humans communicate their goals, and what society values, Law Informs Code. We describe how data generated by legal processes (methods of law-making, statutory interpretation, contract drafting, applications of legal standards, legal reasoning, etc.) can facilitate the robust specification of inherently vague human goals. This increases human-AI alignment and the local usefulness of AI. Toward society-AI alignment, we present a framework for understanding law as the applied philosophy of multi-agent alignment. Although law is partly a reflection of historically contingent political power - and thus not a perfect aggregation of citizen preferences - if properly parsed, its distillation offers the most legitimate computational comprehension of societal values available. If law eventually informs powerful AI, engaging in the deliberative political process to improve law takes on even more meaning.