论文标题

欧几里得准备。 xxv​​。欧几里得的形态挑战 - 迈向数十亿个星系的模型拟合光度法

Euclid preparation. XXV. The Euclid Morphology Challenge -- Towards model-fitting photometry for billions of galaxies

论文作者

Euclid Collaboration, Merlin, E., Castellano, M., Bretonnière, H., Huertas-Company, M., Kuchner, U., Tuccillo, D., Buitrago, F., Peterson, J. R., Conselice, C. J., Caro, F., Dimauro, P., Nemani, L., Fontana, A., Kümmel, M., Häußler, B., Hartley, W. G., Ayllon, A. Alvarez, Bertin, E., Dubath, P., Ferrari, F., Ferreira, L., Gavazzi, R., Hernández-Lang, D., Lucatelli, G., Robotham, A. S. G., Schefer, M., Tortora, C., Aghanim, N., Amara, A., Amendola, L., Auricchio, N., Baldi, M., Bender, R., Bodendorf, C., Branchini, E., Brescia, M., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Castander, F. J., Cavuoti, S., Cimatti, A., Cledassou, R., Congedo, G., Conversi, L., Copin, Y., Corcione, L., Courbin, F., Cropper, M., Da Silva, A., Degaudenzi, H., Dinis, J., Douspis, M., Dubath, F., Duncan, C. A. J., Dupac, X., Dusini, S., Farrens, S., Ferriol, S., Frailis, M., Franceschi, E., Franzetti, P., Galeotta, S., Garilli, B., Gillis, B., Giocoli, C., Grazian, A., Grupp, F., Haugan, S. V. H., Hoekstra, H., Holmes, W., Hormuth, F., Hornstrup, A., Hudelot, P., Jahnke, K., Kermiche, S., Kiessling, A., Kitching, T., Kohley, R., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lloro, I., Mansutti, O., Marggraf, O., Markovic, K., Marulli, F., Massey, R., McCracken, H. J, Medinaceli, E., Melchior, M., Meneghetti, M., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Niemi, S. M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Polenta, G., Poncet, M., Popa, L., Pozzetti, L., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Rossetti, E., Saglia, R., Sapone, D., Sartoris, B., Schneider, P., Secroun, A., Seidel, G., Sirignano, C., Sirri, G., Skottfelt, J., Starck, J. -L., Tallada-Crespí, P., Taylor, A. N., Tereno, I., Toledo-Moreo, R., Tutusaus, I., Valenziano, L., Vassallo, T., Wang, Y., Weller, J., Zacchei, A., Zamorani, G., Zoubian, J., Andreon, S., Bardelli, S., Boucaud, A., Colodro-Conde, C., Di Ferdinando, D., Graciá-Carpio, J., Lindholm, V., Mauri, N., Mei, S., Neissner, C., Scottez, V., Tramacere, A., Zucca, E., Baccigalupi, C., Balaguera-Antolínez, A., Ballardini, M., Bernardeau, F., Biviano, A., Borgani, S., Borlaff, A. S., Burigana, C., Cabanac, R., Cappi, A., Carvalho, C. S., Casas, S., Castignani, G., Cooray, A. R., Coupon, J., Courtois, H. M., Cucciati, O., Davini, S., De Lucia, G., Desprez, G., Escartin, J. A., Escoffier, S., Farina, M., Ganga, K., Garcia-Bellido, J., George, K., Gozaliasl, G., Hildebrandt, H., Hook, I., Ilbert, O., Ilic, S., Joachimi, B., Kansal, V., Keihanen, E., Kirkpatrick, C. C., Loureiro, A., Macias-Perez, J., Magliocchetti, M., Mainetti, G., Maoli, R., Marcin, S., Martinelli, M., Martinet, N., Matthew, S., Maturi, M., Metcalf, R. B., Monaco, P., Morgante, G., Nadathur, S., Nucita, A. A., Patrizii, L., Popa, V., Porciani, C., Potter, D., Pourtsidou, A., Pöntinen, M., Reimberg, P., Sánchez, A. G., Sakr, Z., Schirmer, M., Sereno, M., Stadel, J., Teyssier, R., Valieri, C., Valiviita, J., van Mierlo, S. E., Veropalumbo, A., Viel, M., Weaver, J. R., Scott, D.

论文摘要

ESA欧几里得任务将为约15亿个星系提供高质量的成像。欧几里得联盟的科学地面部分正在开发一条软件管道,以自动处理和分析如此大量的数据。该管道将​​包括一种模型拟合算法,该算法将提供对任务和传统科学核心科学目标至关重要的光度和形态学估计。 Euclid形态挑战是对模拟欧几里得数据上五个模型拟合软件包的性能的比较研究,旨在提供基线以确定最佳适合的算法将在管道中实现。在本文中,我们描述了模拟数据集,并讨论了光度法结果。同伴论文(Euclid Collaboration:Bretonnière等人2022)集中在结构和形态学估计上。我们创建了模拟五个视野的模拟欧几里得图像,每个视野为0.48 deg2的$ i_e $ band band band ins Vis仪器,每个视野都有三个实现星系概况(单和双sérsic,以及通过神经网络获得的“现实”配置文件);对于DoubleSérsic实现中的一个领域,我们还为NISP-P乐器的三个近红外$ y_e $,$ j_e $和$ h_e $ bands模拟了图像,以及五个Rubin/lsst Optical Replectary Bands($ u $,$ u $,$ g $,$ r $,$ r $,$ i $ $ $ $ $ $ $ $ $ $ $)。为了分析结果,我们创建了诊断图和定义的临时指标。比较了五个型号拟合软件包(Deeplegato,Galapagos-2,Morfometryka,Profure和SourceXtractor ++),通常都提供良好的结果。 (切)

The ESA Euclid mission will provide high-quality imaging for about 1.5 billion galaxies. A software pipeline to automatically process and analyse such a huge amount of data in real time is being developed by the Science Ground Segment of the Euclid Consortium; this pipeline will include a model-fitting algorithm, which will provide photometric and morphological estimates of paramount importance for the core science goals of the mission and for legacy science. The Euclid Morphology Challenge is a comparative investigation of the performance of five model-fitting software packages on simulated Euclid data, aimed at providing the baseline to identify the best suited algorithm to be implemented in the pipeline. In this paper we describe the simulated data set, and we discuss the photometry results. A companion paper (Euclid Collaboration: Bretonnière et al. 2022) is focused on the structural and morphological estimates. We created mock Euclid images simulating five fields of view of 0.48 deg2 each in the $I_E$ band of the VIS instrument, each with three realisations of galaxy profiles (single and double Sérsic, and 'realistic' profiles obtained with a neural network); for one of the fields in the double Sérsic realisation, we also simulated images for the three near-infrared $Y_E$, $J_E$ and $H_E$ bands of the NISP-P instrument, and five Rubin/LSST optical complementary bands ($u$, $g$, $r$, $i$, and $z$). To analyse the results we created diagnostic plots and defined ad-hoc metrics. Five model-fitting software packages (DeepLeGATo, Galapagos-2, Morfometryka, ProFit, and SourceXtractor++) were compared, all typically providing good results. (cut)

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源