论文标题

使用图表学习的设计自动化的材料预测

Material Prediction for Design Automation Using Graph Representation Learning

论文作者

Bian, Shijie, Grandi, Daniele, Hassani, Kaveh, Sadler, Elliot, Borijin, Bodia, Fernandes, Axel, Wang, Andrew, Lu, Thomas, Otis, Richard, Ho, Nhut, Li, Bingbing

论文摘要

成功的材料选择对于设计和制造设计自动化至关重要。设计师通过通过性能,制造性和可持续性评估选择最合适的材料来利用他们的知识和经验来创建高质量的设计。智能工具可以通过提供从先前设计中学到的建议来帮助具有不同专业知识的设计师。为了实现这一点,我们介绍了一个图表表示学习框架,该框架支持组件中身体的物质预测。我们将材料选择任务作为节点级预测任务,对CAD模型的汇编图表示,并使用图形神经网络(GNN)对其进行处理。在Fusion 360画廊数据集上执行的三个实验协议的评估表明我们的方法的可行性,达到了0.75 TOP-3 Micro-F1分数。提出的框架可以扩展到大型数据集,并将设计师的知识纳入学习过程。这些功能使该框架可以作为设计自动化的推荐系统和未来工作的基准,从而缩小了人类设计师与智能设计代理之间的差距。

Successful material selection is critical in designing and manufacturing products for design automation. Designers leverage their knowledge and experience to create high-quality designs by selecting the most appropriate materials through performance, manufacturability, and sustainability evaluation. Intelligent tools can help designers with varying expertise by providing recommendations learned from prior designs. To enable this, we introduce a graph representation learning framework that supports the material prediction of bodies in assemblies. We formulate the material selection task as a node-level prediction task over the assembly graph representation of CAD models and tackle it using Graph Neural Networks (GNNs). Evaluations over three experimental protocols performed on the Fusion 360 Gallery dataset indicate the feasibility of our approach, achieving a 0.75 top-3 micro-f1 score. The proposed framework can scale to large datasets and incorporate designers' knowledge into the learning process. These capabilities allow the framework to serve as a recommendation system for design automation and a baseline for future work, narrowing the gap between human designers and intelligent design agents.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源