论文标题

西格尔决定因素的类似物

An analogue of Siegel's determinant

论文作者

Matala-aho, Tapani

论文摘要

$ e $ functions的siegel-shidlovskii理论涉及与线性形式$ d^kr(t)$的确定因素的非逐渐证明,这是辅助函数$ r(t)$的衍生物。令非零函数$ f(t)$满足$ m $ th订单线性微分方程,我们将使用差分运算符$δ= td $编写,让$ l(t)$为任何非零线性形式$Δ^i f(t)$(t)$(t)$(i = 0,...,...,...,m-1,m-1; m-1; m-1; m \ ge 2)$。 $ \ det \ det \ Mathcal a_k $附加到线性形式的$δ^kl(t)$具有某些简单属性,使我们可以简短证明$ \ det \ det \ det \ nathcal a_k $,用于一类差分方程的类别的差异方程,包括超级差异方程的A子类别。

Siegel-Shidlovskii theory of $E$-functions involves a non-vanishing proof for the determinants attached to the linear forms $D^kR(t)$, derivatives of an auxiliary function $R(t)$. Let a non-zero function $F(t)$ satisfy $m$th order linear differential equation which we shall write using the differential operator $Δ=tD$ and let $L(t)$ be any non-zero linear form of the derivatives $Δ^i F(t)$ $(i=0,...,m-1; m\ge 2)$. The determinants $\det\mathcal A_k$ attached to the linear forms $Δ^kL(t)$ have certain simple properties that allow us to give a short proof for the non-vanishing of $\det\mathcal A_k$ for a class of differential equations including a subclass of hypergeometric differential equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源