论文标题
知识蒸馏到整体和可解释的原型乳房X线照片分类模型中
Knowledge Distillation to Ensemble Global and Interpretable Prototype-Based Mammogram Classification Models
论文作者
论文摘要
最先进的(SOTA)深度学习乳房X线照片分类器接受了弱标记图像训练,通常依赖于产生有限可解释性预测的全球模型,这是他们成功地将其转化为临床实践的关键障碍。另一方面,基于原型的模型通过将预测与训练图像原型相关联提高了可解释性,但是它们的准确性不如全球模型,其原型往往具有较差的多样性。我们通过BraixProtopnet ++的建议解决了这两个问题,该问题通过将基于原型的模型结合起来,为全球模型增添了解释性。 BraixProtopnet ++在训练基于原型的模型以提高集合的分类准确性时,可以提炼全局模型的知识。此外,我们提出了一种方法,以确保所有原型都与不同的训练图像相关联,以增加原型多样性。对弱标记的私人和公共数据集进行的实验表明,BraixProtopnet ++的分类精度比SOTA Global和基于原型的模型具有更高的分类精度。使用病变定位来评估模型可解释性,我们显示BraixProtopnet ++比其他基于原型的模型和全球模型的事后解释更有效。最后,我们表明,BraixProtopnet ++学到的原型的多样性优于基于SOTA原型的方法。
State-of-the-art (SOTA) deep learning mammogram classifiers, trained with weakly-labelled images, often rely on global models that produce predictions with limited interpretability, which is a key barrier to their successful translation into clinical practice. On the other hand, prototype-based models improve interpretability by associating predictions with training image prototypes, but they are less accurate than global models and their prototypes tend to have poor diversity. We address these two issues with the proposal of BRAIxProtoPNet++, which adds interpretability to a global model by ensembling it with a prototype-based model. BRAIxProtoPNet++ distills the knowledge of the global model when training the prototype-based model with the goal of increasing the classification accuracy of the ensemble. Moreover, we propose an approach to increase prototype diversity by guaranteeing that all prototypes are associated with different training images. Experiments on weakly-labelled private and public datasets show that BRAIxProtoPNet++ has higher classification accuracy than SOTA global and prototype-based models. Using lesion localisation to assess model interpretability, we show BRAIxProtoPNet++ is more effective than other prototype-based models and post-hoc explanation of global models. Finally, we show that the diversity of the prototypes learned by BRAIxProtoPNet++ is superior to SOTA prototype-based approaches.