论文标题
用于图像超分辨率的异质组CNN
A heterogeneous group CNN for image super-resolution
论文作者
论文摘要
卷积神经网络(CNN)通过深层体系结构获得了出色的性能。但是,这些CNN在复杂的场景下通常对图像超分辨率(SR)实现较差的鲁棒性。在本文中,我们通过利用不同类型的结构信息来获得高质量图像,提出了异质组SR CNN(HGSRCNN)。具体而言,HGSRCNN的每个异质组块(HGB)都采用一个并行的方式,该结构包含一个对称组卷积块和互补的卷积块,以并行方式增强不同类型的较富裕低频结构信息的不同通道的内部和外部关系。为了防止出现获得的冗余功能,以串行方式具有信号增强功能的完善块旨在过滤无用的信息。为了防止原始信息的丢失,多级增强机制指导CNN实现一种对称架构来促进HGSRCNN的表达能力。此外,开发了一种平行的向上采样机制来训练盲目的SR模型。广泛的实验表明,在定量和定性分析方面,提出的HGSRCNN获得了出色的SR性能。可以在https://github.com/hellloxiaotian/hgsrcnn上访问代码。
Convolutional neural networks (CNNs) have obtained remarkable performance via deep architectures. However, these CNNs often achieve poor robustness for image super-resolution (SR) under complex scenes. In this paper, we present a heterogeneous group SR CNN (HGSRCNN) via leveraging structure information of different types to obtain a high-quality image. Specifically, each heterogeneous group block (HGB) of HGSRCNN uses a heterogeneous architecture containing a symmetric group convolutional block and a complementary convolutional block in a parallel way to enhance internal and external relations of different channels for facilitating richer low-frequency structure information of different types. To prevent appearance of obtained redundant features, a refinement block with signal enhancements in a serial way is designed to filter useless information. To prevent loss of original information, a multi-level enhancement mechanism guides a CNN to achieve a symmetric architecture for promoting expressive ability of HGSRCNN. Besides, a parallel up-sampling mechanism is developed to train a blind SR model. Extensive experiments illustrate that the proposed HGSRCNN has obtained excellent SR performance in terms of both quantitative and qualitative analysis. Codes can be accessed at https://github.com/hellloxiaotian/HGSRCNN.