论文标题

深层CLSTM,用于在综合感应和支持通信的车辆网络中进行预测波束形成

Deep CLSTM for Predictive Beamforming in Integrated Sensing and Communication-enabled Vehicular Networks

论文作者

Liu, Chang, Liu, Xuemeng, Li, Shuangyang, Yuan, Weijie, Ng, Derrick Wing Kwan

论文摘要

预测波束形成设计是实现高运动集成感应和通信(ISAC)的重要任务,这在很大程度上取决于通道预测的准确性(CP),即预测用户的角度参数。但是,CP的性能高度取决于估计的历史渠道所述信息(CSI),并带有估计错误,从而导致大多数传统CP方法的性能降解。为了进一步提高预测准确性,在本文中,我们专注于车辆网络中的ISAC,并提出了卷积长期术语(CLSTM)复发性神经网络(CLRNET),以预测车辆角度的设计,以设计预测光束的设计。在开发的clrnet中,采用了卷积神经网络(CNN)模块和LSTM模块来利用空间特征和时间依赖性,从估计的车辆的估计历史角度来促进角度预测。最后,数值结果表明,开发的基于CLRNET的方法对估计误差具有鲁棒性,并且可以显着优于最先进的基准测试,从而实现了ISAC系统的出色总成果性能。

Predictive beamforming design is an essential task in realizing high-mobility integrated sensing and communication (ISAC), which highly depends on the accuracy of the channel prediction (CP), i.e., predicting the angular parameters of users. However, the performance of CP highly depends on the estimated historical channel stated information (CSI) with estimation errors, resulting in the performance degradation for most traditional CP methods. To further improve the prediction accuracy, in this paper, we focus on the ISAC in vehicle networks and propose a convolutional long-short term (CLSTM) recurrent neural network (CLRNet) to predict the angle of vehicles for the design of predictive beamforming. In the developed CLRNet, both the convolutional neural network (CNN) module and the LSTM module are adopted to exploit the spatial features and the temporal dependency from the estimated historical angles of vehicles to facilitate the angle prediction. Finally, numerical results demonstrate that the developed CLRNet-based method is robust to the estimation error and can significantly outperform the state-of-the-art benchmarks, achieving an excellent sum-rate performance for ISAC systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源