论文标题
超声数据合成的附加质量分割
Adnexal Mass Segmentation with Ultrasound Data Synthesis
论文作者
论文摘要
卵巢癌是最致命的妇科恶性肿瘤。该疾病在早期阶段最常是无症状的,其诊断依赖于经阴道超声图像的专家评估。超声是表征附加质量的一线成像方式,它需要大量的专业知识,其分析是主观和劳动力密集的,因此易于误差。因此,在临床实践中需要进行自动化的过程,以促进和标准化扫描评估。使用监督的学习,我们已经证明了附加质量的分割是可能的,但是流行率和标签失衡限制了代表性不足的类别的性能。为了减轻这种情况,我们应用了一种新颖的病理学数据合成器。我们通过使用Poisson图像编辑将较少常见的质量整合到其他样品中,以其相应的地面真实分割创建合成的医学图像。我们的方法在所有班级中都取得了最佳的表现,包括与NNU-NET基线方法相比,提高了8%。
Ovarian cancer is the most lethal gynaecological malignancy. The disease is most commonly asymptomatic at its early stages and its diagnosis relies on expert evaluation of transvaginal ultrasound images. Ultrasound is the first-line imaging modality for characterising adnexal masses, it requires significant expertise and its analysis is subjective and labour-intensive, therefore open to error. Hence, automating processes to facilitate and standardise the evaluation of scans is desired in clinical practice. Using supervised learning, we have demonstrated that segmentation of adnexal masses is possible, however, prevalence and label imbalance restricts the performance on under-represented classes. To mitigate this we apply a novel pathology-specific data synthesiser. We create synthetic medical images with their corresponding ground truth segmentations by using Poisson image editing to integrate less common masses into other samples. Our approach achieves the best performance across all classes, including an improvement of up to 8% when compared with nnU-Net baseline approaches.