论文标题

用Qismet导航变异量子算法的动态噪声格局

Navigating the dynamic noise landscape of variational quantum algorithms with QISMET

论文作者

Ravi, Gokul Subramanian, Smith, Kaitlin N., Baker, Jonathan M., Kannan, Tejas, Earnest, Nathan, Javadi-Abhari, Ali, Hoffmann, Henry, Chong, Frederic T.

论文摘要

动态NISQ噪声格局的瞬态错误对于理解是挑战性的,并且特别有害于迭代和/或长期运行的应用类别,因此它们及时缓解对现实世界应用中的量子优势很重要。迭代长期量子应用最受欢迎的例子是变异量子算法(VQAS)。迭代地,VQA的经典优化器评估了目标函数的候选候选者,并选择最佳电路来实现应用程序的目标。噪声波动会对VQA迭代 /调整候选物的目标函数估计产生重大的短暂影响。这会严重影响VQA调整,并扩大其准确性和收敛性。 本文提出了Qismet:跳过量子迭代以减轻误差瞬变,以浏览VQAS的动态噪声格局。 QISMET会积极避免高波动噪声的实例,这些噪声被预测会对特定的VQA迭代产生重大的瞬态误差影响。为了实现这一目标,QISMET估计了VQA迭代中的短暂误差,并设计了一个控制器,以使VQA调整忠实于瞬态场景。通过这样做,Qismet有效地减轻了对VQA的瞬态噪声影响的很大一部分,并且能够在传统的VQA基线上提高1.3倍-3X的忠诚度,对不同应用和机器的替代方法进行了1.6-2.4倍的改善。此外,为了努力分析瞬变的效果,这项工作还通过观察真实机器瞬变为目标VQA应用构建了瞬态噪声模型。然后将它们与Qiskit模拟器集成在一起。

Transient errors from the dynamic NISQ noise landscape are challenging to comprehend and are especially detrimental to classes of applications that are iterative and/or long-running, and therefore their timely mitigation is important for quantum advantage in real-world applications. The most popular examples of iterative long-running quantum applications are variational quantum algorithms (VQAs). Iteratively, VQA's classical optimizer evaluates circuit candidates on an objective function and picks the best circuits towards achieving the application's target. Noise fluctuation can cause a significant transient impact on the objective function estimation of the VQA iterations / tuning candidates. This can severely affect VQA tuning and, by extension, its accuracy and convergence. This paper proposes QISMET: Quantum Iteration Skipping to Mitigate Error Transients, to navigate the dynamic noise landscape of VQAs. QISMET actively avoids instances of high fluctuating noise which are predicted to have a significant transient error impact on specific VQA iterations. To achieve this, QISMET estimates transient error in VQA iterations and designs a controller to keep the VQA tuning faithful to the transient-free scenario. By doing so, QISMET efficiently mitigates a large portion of the transient noise impact on VQAs and is able to improve the fidelity by 1.3x-3x over a traditional VQA baseline, with 1.6-2.4x improvement over alternative approaches, across different applications and machines. Further, to diligently analyze the effects of transients, this work also builds transient noise models for target VQA applications from observing real machine transients. These are then integrated with the Qiskit simulator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源