论文标题
高分辨率卫星图像,用于建模干旱化对作物生产的影响
High-Resolution Satellite Imagery for Modeling the Impact of Aridification on Crop Production
论文作者
论文摘要
经过良好策划的数据集的可用性推动了机器学习成功(ML)模型的成功。尽管对农业的地球观测数据的获取增加了,但仍有少数策划的,标记的数据集,这限制了其在训练ML模型中用于遥感(RS)农业中的潜力。为此,我们介绍了一个首先的数据集,镰刀,在3个不同的卫星的不同空间分辨率下具有时间序列图像,并注明了印度泰米尔纳德邦的Cauvery Delta地区的多个关键裁剪参数,用于帕迪种植。该数据集由388个独特地块的2398个季节样品组成,分布在三角洲的4个地区。该数据集涵盖了2018年1月三月2021年1月期间之间的多光谱,热和微波数据。帕迪样品用4个关键的裁剪参数注释,即播种日期,移植日期,收获日期和作物产量。这是最早将生长季节(使用播种和收获日期)视为数据集的一部分的研究之一。我们还提出了一种产量预测策略,该策略使用基于观察到的生长季节以及该地区泰米尔纳德邦农业大学获得的标准季节性信息生成的时间序列数据。随之而来的绩效提高凸显了ML技术的影响,该技术利用了与特定地区的农民紧随其后的标准实践相一致的领域知识。我们将数据集基准在3个单独的任务上,即作物类型,物候日期(播种,移植,收获)和产量预测,并开发了一个端到端框架,用于在现实世界中预测关键的作物参数。
The availability of well-curated datasets has driven the success of Machine Learning (ML) models. Despite the increased access to earth observation data for agriculture, there is a scarcity of curated, labelled datasets, which limits the potential of its use in training ML models for remote sensing (RS) in agriculture. To this end, we introduce a first-of-its-kind dataset, SICKLE, having time-series images at different spatial resolutions from 3 different satellites, annotated with multiple key cropping parameters for paddy cultivation for the Cauvery Delta region in Tamil Nadu, India. The dataset comprises of 2,398 season-wise samples from 388 unique plots distributed across 4 districts of the Delta. The dataset covers multi-spectral, thermal and microwave data between the time period January 2018-March 2021. The paddy samples are annotated with 4 key cropping parameters, i.e. sowing date, transplanting date, harvesting date and crop yield. This is one of the first studies to consider the growing season (using sowing and harvesting dates) as part of a dataset. We also propose a yield prediction strategy that uses time-series data generated based on the observed growing season and the standard seasonal information obtained from Tamil Nadu Agricultural University for the region. The consequent performance improvement highlights the impact of ML techniques that leverage domain knowledge that are consistent with standard practices followed by farmers in a specific region. We benchmark the dataset on 3 separate tasks, namely crop type, phenology date (sowing, transplanting, harvesting) and yield prediction, and develop an end-to-end framework for predicting key crop parameters in a real-world setting.