论文标题

在功能字段上的歧管上的不均匀khitchine-groshev类型定理

Inhomogeneous Khitchine-Groshev type theorems on manifolds over function fields

论文作者

Das, Sourav, Ganguly, Arijit

论文摘要

本文的目的是在均匀和不均匀的环境中建立一个完整的Khintchine-Groshev型定理,该定理是在分析性非平衡歧管上的局部特征上。在这里考虑了双苯胺近似的双重形式。我们的论文提供了这种类型的各种早期结果的功能场类似物,该结果在欧几里得和S-ADIC框架中,由Bernik,Kleinbock和Margulis,Beresnevich,Beresnevich,Bernik,Kleinbock和Margulis,Badziahin,Beresnevich和Mohanmadi,Mohammadi和Ghosh和Golsef.和Golsefidy和D.和D.和D.和D.和D.和D.

The goal of this paper is to establish a complete Khintchine-Groshev type theorem in both homogeneous and inhomogeneous setting, on analytic nondegenerate manifolds over a local field of positive characteristic. The dual form of Diophantine approximation has been considered here. Our treatise provides the function field analogues of the various earlier results of this type, studied in the euclidean and S-adic framework, by Bernik, Kleinbock and Margulis, Beresnevich, Bernik, Kleinbock and Margulis, Badziahin, Beresnevich and Velani, Mohammadi and Golsefidy, and Datta and Ghosh.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源