论文标题

使用随机微分方程面对超分辨率

Face Super-Resolution Using Stochastic Differential Equations

论文作者

Santos, Marcelo dos, Laroca, Rayson, Ribeiro, Rafael O., Neves, João, Proença, Hugo, Menotti, David

论文摘要

传播模型已被证明对各种应用,例如图像,音频和图形生成有效。其他重要的应用是图像超分辨率和逆问题解决方案。最近,一些作品使用了随机微分方程(SDE)将扩散模型推广到连续时间。在这项工作中,我们介绍SDE来生成超分辨率的面部图像。据我们所知,这是SDE首次用于此类应用程序。所提出的方法比基于扩散模型的现有超级分辨率方法提供了改进的峰值信噪比(PSNR),结构相似性指数(SSIM)和一致性。特别是,我们还评估了该方法在面部识别任务中的潜在应用。通用的面部特征提取器用于比较超分辨率图像与地面真相,并获得了与其他方法相比,获得了卓越的结果。我们的代码可在https://github.com/marcelowds/sr-sde上公开获取

Diffusion models have proven effective for various applications such as images, audio and graph generation. Other important applications are image super-resolution and the solution of inverse problems. More recently, some works have used stochastic differential equations (SDEs) to generalize diffusion models to continuous time. In this work, we introduce SDEs to generate super-resolution face images. To the best of our knowledge, this is the first time SDEs have been used for such an application. The proposed method provides an improved peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and consistency than the existing super-resolution methods based on diffusion models. In particular, we also assess the potential application of this method for the face recognition task. A generic facial feature extractor is used to compare the super-resolution images with the ground truth and superior results were obtained compared with other methods. Our code is publicly available at https://github.com/marcelowds/sr-sde

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源