论文标题

Quantum Paraelectric KTAO中的温度依赖性Anharmonic Phonon $ _3 $由第一原理和机器学习的力场

Temperature-dependent anharmonic phonons in quantum paraelectric KTaO$_3$ by first principles and machine-learned force fields

论文作者

Ranalli, Luigi, Verdi, Carla, Monacelli, Lorenzo, Calandra, Matteo, Kresse, Georg, Franchini, Cesare

论文摘要

从第一原则中了解量子材料中的集体现象是迈向工程材料属性并设计新功能的有前途的途径。这项工作研究了量子旁接收状态,这是一种难以捉摸的物质状态,其特征是由于与Anharmonic Phonon效应相关的量子波动引起的低温下的铁电不稳定性的平稳饱和。在0-300 K范围内,软铁电声子模式在0-300 K中的温度依赖性演变是通过将密度函数理论(DFT)计算与随机自洽的谐波近似辅助的辅助的,通过在网上机上辅助机上辅助的力场进行建模。计算出的数据表明,与实验一致,包括Anharmonic术语对于稳定由DFT预测的假想的铁电声子稳定至关重要。使用机器学习的力场来增强DFT工作流程,可以使用在宽且密集的温度范围内使用大型超级电池对配置空间进行有效的随机采样,这是通过常规的Ab Inlebion协议无法访问的。这项工作提出了一个强大的计算工作流程,能够考虑涉及不同自由度并在大时间/长度尺度上发生的集体行为,为精确建模和材料中量子效应的控制铺平了道路。

Understanding collective phenomena in quantum materials from first principles is a promising route toward engineering materials properties on demand and designing new functionalities. This work examines the quantum paraelectric state, an elusive state of matter characterized by the smooth saturation of the ferroelectric instability at low temperature due to quantum fluctuations associated with anharmonic phonon effects. The temperature-dependent evolution of the soft ferroelectric phonon mode in the quantum paraelectric KTaO$_3$ in the range 0-300 K is modelled by combining density functional theory (DFT) calculations with the stochastic self-consistent harmonic approximation assisted by an on-the-fly machine-learned force field. The calculated data show that including anharmonic terms is essential to stabilize the spurious imaginary ferroelectric phonon predicted by DFT, in agreement with experiments. Augmenting the DFT workflow with machine-learned force fields allows for efficient stochastic sampling of the configurational space using large supercells in a broad and dense temperature range, inaccessible by conventional ab initio protocols. This work proposes a robust computational workflow capable of accounting for collective behaviors involving different degrees of freedom and occurring at large time/length scales, paving the way for precise modeling and control of quantum effects in materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源