论文标题

使用事件传感弥合空间域间隙以进行卫星姿势估算

Towards Bridging the Space Domain Gap for Satellite Pose Estimation using Event Sensing

论文作者

Jawaid, Mohsi, Elms, Ethan, Latif, Yasir, Chin, Tat-Jun

论文摘要

使用合成数据训练的深层模型需要域的适应性,以弥合模拟环境和目标环境之间的差距。最新的域适应方法通常需要来自目标域的足够数量(未标记的)数据。但是,当目标域是极端环境(例如空间)时,这种需求很难满足。在本文中,我们的目标问题是接近卫星姿势估计,从实际的会合任务中获取卫星的图像是昂贵的。我们证明,事件传感提供了一种有希望的解决方案,可以在鲜明的照明差异下从模拟到目标域。我们的主要贡献是一种基于事件的卫星姿势估计技术,纯粹是基于基本数据增强的合成事件数据训练的,以提高针对实际(嘈杂)事件传感器的鲁棒性。基础我们的方法是一个具有仔细校准的地面真相的新型数据集,其中包括通过在剧烈的照明条件下在实验室中模拟卫星集合场景获得的真实事件数据。数据集上的结果表明,我们基于事件的卫星姿势估计方法仅在没有适应的情况下接受合成数据训练,可以有效地介绍到目标域。

Deep models trained using synthetic data require domain adaptation to bridge the gap between the simulation and target environments. State-of-the-art domain adaptation methods often demand sufficient amounts of (unlabelled) data from the target domain. However, this need is difficult to fulfil when the target domain is an extreme environment, such as space. In this paper, our target problem is close proximity satellite pose estimation, where it is costly to obtain images of satellites from actual rendezvous missions. We demonstrate that event sensing offers a promising solution to generalise from the simulation to the target domain under stark illumination differences. Our main contribution is an event-based satellite pose estimation technique, trained purely on synthetic event data with basic data augmentation to improve robustness against practical (noisy) event sensors. Underpinning our method is a novel dataset with carefully calibrated ground truth, comprising of real event data obtained by emulating satellite rendezvous scenarios in the lab under drastic lighting conditions. Results on the dataset showed that our event-based satellite pose estimation method, trained only on synthetic data without adaptation, could generalise to the target domain effectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源