论文标题
使用高空间准确性ALS量化和纠正太空传播激光雷达森林冠层观测中的地理位置误差:贝叶斯模型方法
Quantifying and correcting geolocation error in spaceborne LiDAR forest canopy observations using high spatial accuracy ALS: A Bayesian model approach
论文作者
论文摘要
森林结构的太空样品采样检测和范围(LIDAR)的地理位置误差会损害森林属性估计值,并使用地理参考的现场测量或其他远程感知的数据来降低整合。当地理位置误差未得到充分量化时,数据集成尤其有问题。我们提出了一个使用空气传播激光扫描(ALS)数据来量化和纠正Spaceborne采样激光雷德的地理位置误差的通用模型。为了说明该模型,使用了NASA Goddard的LiDar Hypefral&Thermal Imager(G-LIHT)的激光雷达数据,并与NASA全球生态系统动力学研究(GEDI)的LIDAR数据子集一起使用。该模型使用空间重合的G-LIHT可容纳从模拟的GEDI足迹内核得出的多个顶篷高度指标,并在两个数据集生成的冠层高度指标之间都结合了添加和乘法映射。贝叶斯实现在参数和地理位置误差估计中都提供了概率不确定性量化。结果显示,西南方向的系统地理位置误差为9.62 m。此外,GEDI足迹内的估计地理位置误差高度可变,结果显示了〜0.45的概率,真正的足迹中心在20 m以内。通过此处概述的模型估算和纠正地理位置误差可以帮助告知随后的努力,将Spaceborne LiDAR数据(如GEDI)与其他地理参考数据集成在一起。
Geolocation error in spaceborne sampling light detection and ranging (LiDAR) measurements of forest structure can compromise forest attribute estimates and degrade integration with georeferenced field measurements or other remotely sensed data. Data integration is especially problematic when geolocation error is not well quantified. We propose a general model that uses airborne laser scanning (ALS) data to quantify and correct geolocation error in spaceborne sampling LiDAR. To illustrate the model, LiDAR data from NASA Goddard's LiDAR Hyperspectral & Thermal Imager (G-LiHT) was used with a subset of LiDAR data from NASA's Global Ecosystem Dynamics Investigation (GEDI). The model accommodates multiple canopy height metrics derived from a simulated GEDI footprint kernel using spatially coincident G-LiHT, and incorporates both additive and multiplicative mapping between the canopy height metrics generated from both datasets. A Bayesian implementation provides probabilistic uncertainty quantification in both parameter and geolocation error estimates. Results show a systematic geolocation error of 9.62 m in the southwest direction. In addition, estimated geolocation errors within GEDI footprints were highly variable, with results showing a ~0.45 probability the true footprint center is within 20 m. Estimating and correcting geolocation error via the model outlined here can help inform subsequent efforts to integrate spaceborne LiDAR data, like GEDI, with other georeferenced data.