论文标题

分数布朗运动和分数高斯噪声的路径积分

Path integrals for fractional Brownian motion and fractional Gaussian noise

论文作者

Meerson, Baruch, Bénichou, Olivier, Oshanin, Gleb

论文摘要

维纳(Wiener)的路径积分在布朗运动的研究中起着核心作用。在这里,我们得出了更通用的\ emph {分数}布朗运动(FBM)的精确路径积分表示及其时间派生过程 - 分数高斯噪声(FGN)。由Kolmogorov,Mandelbrot和van Ness引入的这些范式非马克维亚随机过程在整个学科中发现了许多应用,从细胞环境中的异常扩散到数学融资。尽管如此,他们的确切路径综合表示以前尚不清楚。我们的形式主义利用了FBM和FGN的高斯性,依赖于单数积分方程的理论,并通过代表FBM的FGN功能来克服了一些技术困难,而对于超延伸的FBM而言,FGN的FGN范围以及FGN的衍生产品的衍生产品。我们还扩展了形式主义以包括外部强迫。确切而明确的路径综合表示为FBM和FGN的研究开放了新的进攻。

The Wiener's path integral plays a central role in the studies of Brownian motion. Here we derive exact path-integral representations for the more general \emph{fractional} Brownian motion (fBm) and for its time derivative process -- the fractional Gaussian noise (fGn). These paradigmatic non-Markovian stochastic processes, introduced by Kolmogorov, Mandelbrot and van Ness, found numerous applications across the disciplines, ranging from anomalous diffusion in cellular environments to mathematical finance. Still, their exact path-integral representations were previously unknown. Our formalism exploits the Gaussianity of the fBm and fGn, relies on theory of singular integral equations and overcomes some technical difficulties by representing the action functional for the fBm in terms of the fGn for the sub-diffusive fBm, and in terms of the derivative of the fGn for the super-diffusive fBm. We also extend the formalism to include external forcing. The exact and explicit path-integral representations open new inroads into the studies of the fBm and fGn.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源