论文标题

图像到图像翻译,用于从粗略对齐的图像对自动驾驶

Image-to-Image Translation for Autonomous Driving from Coarsely-Aligned Image Pairs

论文作者

Xia, Youya, Monica, Josephine, Chao, Wei-Lun, Hariharan, Bharath, Weinberger, Kilian Q, Campbell, Mark

论文摘要

自动驾驶汽车必须能够可靠地处理不利的天气条件(例如,雪地)安全运行。在本文中,我们研究了以不利条件捕获的转动传感器输入(即图像)的想法(即阳光),下游任务(例如,语义细分)可以达到高精度。先前的工作主要将其作为未配对的图像到图像翻译问题,因为缺乏在完全相同的相机姿势和语义布局下捕获的配对图像。虽然没有完美对准的图像,但可以轻松获得粗配上的图像。例如,许多人每天在好天气和不利的天气中驾驶相同的路线;因此,在近距离GPS位置捕获的图像可以形成一对。尽管来自重复遍历的数据不太可能捕获相同的前景对象,但我们认为它们提供了丰富的上下文信息来监督图像翻译模型。为此,我们提出了一个新颖的训练目标,利用了粗糙的图像对。我们表明,我们与之一致的训练方案可以提高更好的图像翻译质量和改进的下游任务,例如语义分割,单眼深度估计和视觉定位。

A self-driving car must be able to reliably handle adverse weather conditions (e.g., snowy) to operate safely. In this paper, we investigate the idea of turning sensor inputs (i.e., images) captured in an adverse condition into a benign one (i.e., sunny), upon which the downstream tasks (e.g., semantic segmentation) can attain high accuracy. Prior work primarily formulates this as an unpaired image-to-image translation problem due to the lack of paired images captured under the exact same camera poses and semantic layouts. While perfectly-aligned images are not available, one can easily obtain coarsely-paired images. For instance, many people drive the same routes daily in both good and adverse weather; thus, images captured at close-by GPS locations can form a pair. Though data from repeated traversals are unlikely to capture the same foreground objects, we posit that they provide rich contextual information to supervise the image translation model. To this end, we propose a novel training objective leveraging coarsely-aligned image pairs. We show that our coarsely-aligned training scheme leads to a better image translation quality and improved downstream tasks, such as semantic segmentation, monocular depth estimation, and visual localization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源