论文标题
二元离子混合物和白色矮人冷却的相图
Phase diagrams of binary ionic mixtures and white dwarf cooling
论文作者
论文摘要
在线性混合形式主义的框架内考虑了完全电离的二元离子混合物的相图,考虑到理解量子一组分血浆热力学方面的最新进展。我们遵循了共济型相图转换为偏齿和共晶类型,电荷比的增加。对于固体$^{12} $ c/$^{16} $ o和$^{16} $ o/$^{20} $ ne mixtures,我们发现了巨大的可质性空白。它们的外观似乎是该理论的强大特征。这些差距自然地发展为以$ z_2/z_1 $的高共晶相图的两个固定区域。它们不取决于超出其适用性限制的热力学拟合扩展。这些间隙对二进制混合物组成和物理学敏感,对于C/O和O/NE的混合物,对于文献中可用的线性混合固态能量的三种校正变体都大不相同。当物质冷却到其可靠性差距温度时,会进行实体过程。它导致分离较重,更轻的固体解决方案。这可能代表重力能量的重要储层,应包括在未来的白矮人(WD)冷却模拟中。离子量子效应主要导致中度的修改,但是对于某些$ z_2/z_1 $,这些效果可以产生相图的定性重组。对于使用$^{22} $ ne蒸馏的模型,在冷却C/O/NE WD中提出的作为超大WD冷却异常的解决方案可能很重要。
Phase diagrams of fully ionized binary ionic mixtures are considered within the framework of the linear mixing formalism taking into account recent advances in understanding quantum one-component plasma thermodynamics. We have followed a transformation of azeotropic phase diagrams into peritectic and eutectic types with increase of the charge ratio. For solid $^{12}$C/$^{16}$O and $^{16}$O/$^{20}$Ne mixtures, we have found extensive miscibility gaps. Their appearance seems to be a robust feature of the theory. The gaps evolve naturally into two-solid regions of eutectic phase diagrams at higher $Z_2/Z_1$. They do not depend on thermodynamic fit extensions beyond their applicability limits. The gaps are sensitive to binary mixture composition and physics, being strongly different for C/O and O/Ne mixtures and for the three variants of corrections to linear-mixing solid-state energies available in the literature. When matter cools to its miscibility gap temperature, the exsolution process takes place. It results in a separation of heavier and lighter solid solutions. This may represent a significant reservoir of gravitational energy and should be included in future white dwarf (WD) cooling simulations. Ion quantum effects mostly resulted in moderate modifications, however, for certain $Z_2/Z_1$, these effects can produce qualitative restructuring of the phase diagram. This may be important for the model with $^{22}$Ne distillation in cooling C/O/Ne WD proposed as a solution for the ultramassive WD cooling anomaly.