论文标题

结合运动匹配和方向预测,以使消费级VR设备的化身动画

Combining Motion Matching and Orientation Prediction to Animate Avatars for Consumer-Grade VR Devices

论文作者

Ponton, Jose Luis, Yun, Haoran, Andujar, Carlos, Pelechano, Nuria

论文摘要

用户化身的动画在传达其姿势,手势和相对距离的虚拟对象或其他用户方面起着至关重要的作用。沉浸式VR中的自动avatar动画有助于改善用户体验,并提供一种体现感。但是,消费级VR设备通常最多包括三个跟踪器,一个在头部安装显示器(HMD)和手持VR控制器的两个。由于重建问题的问题是从这种稀疏数据中提出的,尤其是对于下半身,大多数VR游戏采用的方法包括假设身体方向与HMD的身体取向匹配HMD的方法,并应用动画和从减少的动画中应用动画混合和时间播放。不幸的是,这种方法在用户和头像运动之间产生明显的不匹配。在这项工作中,我们提出了一种新的方法,可以使用户头像动画,该化身适用于当前主流VR设备。首先,我们使用神经网络根据HMD和手动控制器的跟踪信息来估计用户的身体方向。然后,我们将这种方向与HMD的速度和旋转一起使用,以构建一个特征向量,该特征向量为运动匹配的算法提供。我们构建了一个MOCAP数据库,其中使用VR用户的动画戴着HMD,并用它来测试我们对自avatars和其他用户的化身的方法。我们的结果表明,我们的系统可以提供各种下半身的动画,同时正确匹配用户方向,这反过来又使我们不仅可以代表前进的运动,而且可以朝任何方向踏上阶梯。

The animation of user avatars plays a crucial role in conveying their pose, gestures, and relative distances to virtual objects or other users. Self-avatar animation in immersive VR helps improve the user experience and provides a Sense of Embodiment. However, consumer-grade VR devices typically include at most three trackers, one at the Head Mounted Display (HMD), and two at the handheld VR controllers. Since the problem of reconstruction the user pose from such sparse data is ill-defined, especially for the lower body, the approach adopted by most VR games consists of assuming the body orientation matches that of the HMD, and applying animation blending and time-warping from a reduced set of animations. Unfortunately, this approach produces noticeable mismatches between user and avatar movements. In this work we present a new approach to animate user avatars that is suitable for current mainstream VR devices. First, we use a neural network to estimate the user's body orientation based on the tracking information from the HMD and the hand controllers. Then we use this orientation together with the velocity and rotation of the HMD to build a feature vector that feeds a Motion Matching algorithm. We built a MoCap database with animations of VR users wearing a HMD and used it to test our approach on both self-avatars and other users' avatars. Our results show that our system can provide a large variety of lower body animations while correctly matching the user orientation, which in turn allows us to represent not only forward movements but also stepping in any direction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源