论文标题

优化多标签在线连续学习的内存中的班级分布

Optimizing Class Distribution in Memory for Multi-Label Online Continual Learning

论文作者

Liang, Yan-Shuo, Li, Wu-Jun

论文摘要

在线持续学习,尤其是在任务身份和任务边界不可用时,是一个挑战性的持续学习设置。一种代表性的在线持续学习方法是基于重播的方法,在这种方法中,保持了一个称为内存的重播缓冲区,以保留过去样本的一小部分,以克服灾难性的遗忘。当通过在线持续学习来解决时,大多数现有的基于重播的方法都集中在单标签问题上,其中数据流中的每个样本只有一个标签。但是,在在线持续学习环境中,多标签问题也可能发生,在线持续学习环境中,每个样本可能具有一个以上的标签。在使用多标签样本的在线设置中,数据流中的类分布通常高度不平衡,并且在内存中控制类别的分布是一项挑战,因为更改属于一个类的样本的数量可能会影响属于其他类的样本的数量。但是,内存中的类分布对于基于重播的内存至关重要,以获得良好的性能,尤其是当数据流中的类分布高度不平衡时。在本文中,我们提出了一种简单但有效的方法,称为多标签在线持续学习,称为内存中的班级分布(OCDM)。 OCDM将内存更新机制制定为优化问题,并通过解决此问题来更新内存。在两个广泛使用的多标签数据集上的实验表明,OCDM可以很好地控制内存中的类分布,并且可以胜过其他最先进的方法。

Online continual learning, especially when task identities and task boundaries are unavailable, is a challenging continual learning setting. One representative kind of methods for online continual learning is replay-based methods, in which a replay buffer called memory is maintained to keep a small part of past samples for overcoming catastrophic forgetting. When tackling with online continual learning, most existing replay-based methods focus on single-label problems in which each sample in the data stream has only one label. But multi-label problems may also happen in the online continual learning setting in which each sample may have more than one label. In the online setting with multi-label samples, the class distribution in data stream is typically highly imbalanced, and it is challenging to control class distribution in memory since changing the number of samples belonging to one class may affect the number of samples belonging to other classes. But class distribution in memory is critical for replay-based memory to get good performance, especially when the class distribution in data stream is highly imbalanced. In this paper, we propose a simple but effective method, called optimizing class distribution in memory (OCDM), for multi-label online continual learning. OCDM formulates the memory update mechanism as an optimization problem and updates the memory by solving this problem. Experiments on two widely used multi-label datasets show that OCDM can control the class distribution in memory well and can outperform other state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源