论文标题

重新思考图像去吊索网络中的性能增长

Rethinking Performance Gains in Image Dehazing Networks

论文作者

Song, Yuda, Zhou, Yang, Qian, Hui, Du, Xin

论文摘要

Dimage Dehazing是低水平视力中的一个活跃主题,并且随着深度学习的快速发展,已经提出了许多图像飞机网络。尽管这些网络的管道效果很好,但改善图像飞行性能的关键机制尚不清楚。因此,我们不针对具有精美模块的飞行网络。相反,我们对流行的U-NET进行了最小的修改,以获得紧凑的飞行网络。具体而言,我们将U-NET中的卷积块与门控机构,使用选择性内核融合的悬挂块,融合主要路径的特征图,并跳过连接,并调用所得的U-Net变体Gunet。结果,由于开销的大幅减少,Gunet优于多个图像飞行数据集上的最新方法。最后,我们通过广泛的消融研究来验证这些关键设计,以验证图像去除网络的性能。

Image dehazing is an active topic in low-level vision, and many image dehazing networks have been proposed with the rapid development of deep learning. Although these networks' pipelines work fine, the key mechanism to improving image dehazing performance remains unclear. For this reason, we do not target to propose a dehazing network with fancy modules; rather, we make minimal modifications to popular U-Net to obtain a compact dehazing network. Specifically, we swap out the convolutional blocks in U-Net for residual blocks with the gating mechanism, fuse the feature maps of main paths and skip connections using the selective kernel, and call the resulting U-Net variant gUNet. As a result, with a significantly reduced overhead, gUNet is superior to state-of-the-art methods on multiple image dehazing datasets. Finally, we verify these key designs to the performance gain of image dehazing networks through extensive ablation studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源