论文标题
功率电子设备的强大且可解释的数据驱动的异常检测方法
A Robust and Explainable Data-Driven Anomaly Detection Approach For Power Electronics
论文作者
论文摘要
及时,准确地检测功率电子中的异常,对于维持复杂的生产系统而言越来越重要。强大而可解释的策略有助于减少系统的停机时间,并抢占或减轻基础设施网络攻击。这项工作从解释当前数据集和机器学习算法输出中存在的不确定性类型开始。然后引入和分析三种用于打击这些不确定性的技术。我们进一步介绍了两种异常检测和分类方法,即矩阵曲线算法和异常变压器,这些算法是在电源电子转换器数据集的背景下应用的。具体而言,矩阵配置文件算法被证明是一种可作为检测流时间序列数据实时异常的可推广方法。迭代矩阵配置文件的结构python库实现用于创建检测器。创建了一系列自定义过滤器并将其添加到检测器中,以调整其灵敏度,回忆和检测精度。我们的数值结果表明,通过简单的参数调整,检测器在各种故障场景中提供了高精度和性能。
Timely and accurate detection of anomalies in power electronics is becoming increasingly critical for maintaining complex production systems. Robust and explainable strategies help decrease system downtime and preempt or mitigate infrastructure cyberattacks. This work begins by explaining the types of uncertainty present in current datasets and machine learning algorithm outputs. Three techniques for combating these uncertainties are then introduced and analyzed. We further present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer, which are applied in the context of a power electronic converter dataset. Specifically, the Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data. The STUMPY python library implementation of the iterative Matrix Profile is used for the creation of the detector. A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy. Our numerical results show that, with simple parameter tuning, the detector provides high accuracy and performance in a variety of fault scenarios.