论文标题
通过反复的广义测量值,通过3 Quit非最大值纠缠的GHz状态通过概率量子传送
Probabilistic Quantum Teleportation via 3-Qubit Non-Maximally Entangled GHZ State by Repeated Generalized Measurements
论文作者
论文摘要
我们提出了一种重复的广义钟状测量(GBSM)的方案,以使用3 Q Qubit的非最大值纠缠(NME)GHz状态作为量子通道的粒子的单个Qubit状态(例如,0)的概率量子传送。爱丽丝(Alice)保留了3 Qubit Resource的两个量子位(例如1和2),第三量子量子(例如3)送给Bob。最初,爱丽丝在Qubits 0和1上执行GBSM,这可能会导致成功或失败。在获得成功时,爱丽丝以$σ_{x} $的特征为基础上的量子2进行投影测量。这两个测量结果都经典地传达给鲍勃,这有助于他对Qubit 3进行合适的单一转换以恢复信息状态。另一方面,如果获得了故障,则在Qubits 0和2上执行GBSM的下一次尝试。在交替的Qubits上重复GBSM的过程可能会继续进行,直到实现单位保真度完美传送为止。我们已经获得了分析表达式,以获得多达三种GBSM的成功概率。成功的概率被证明是NME资源双分化并发的多项式函数。已经绘制了与两分之一并发的成功概率的变化,这表明了与GBSM重复统一的成功概率的收敛性。
We propose a scheme of repeated generalized Bell state measurement (GBSM) for probabilistic quantum teleportation of single qubit state of a particle (say, 0) using 3-qubit non-maximally entangled (NME) GHZ state as a quantum channel. Alice keeps two qubits (say, 1 and 2) of the 3-qubit resource and the third qubit (say, 3) goes to Bob. Initially, Alice performs GBSM on qubits 0 and 1 which may lead to either success or failure. On obtaining success, Alice performs projective measurement on qubit 2 in the eigen basis of $σ_{x}$. Both these measurement outcomes are communicated to Bob classically, which helps him to perform a suitable unitary transformation on qubit 3 to recover the information state. On the other hand, if failure is obtained, the next attempt of GBSM is performed on qubits 0 and 2. This process of repeating GBSM on alternate pair of qubits may continue until perfect teleportation with unit fidelity is achieved. We have obtained analytical expressions for success probability up to three repetitions of GBSM. The success probability is shown to be a polynomial function of bipartite concurrence of the NME resource. The variation of success probability with the bipartite concurrence has been plotted which shows the convergence of success probability to unity with GBSM repetitions.