论文标题

在混合系统中进行量子索引搜索的迭代量表管理

Iterative Qubits Management for Quantum Index Searching in a Hybrid System

论文作者

Mu, Wenrui, Mao, Ying, Cheng, Long, Wang, Qingle, Jiang, Weiwen, Chen, Pin-Yu

论文摘要

量子计算系统的最新进展引起了极大的关注。 IBM,Amazon和IONQ等商业公司已开始提供嘈杂的中等规模量子计算机的访问权限。研究人员和企业家试图部署旨在实现量子加速的应用程序。 Grover的算法和量子相估计是许多应用的基础,具有这种加速的潜力。尽管从理论上讲,这些算法获得出色的性能,而将它们部署在现有的量子设备上是一项艰巨的任务。例如,量子相估计需要额外的Qubits和大量的受控操作,由于低度和嘈杂的硬件,这些操作是不切实际的。为了充分利用有限的车载量子位,我们提出了IQUC,该IQUC旨在在量子古典混合系统中进行索引搜索和计数。 IQUC是基于Grover的算法。从问题大小的角度来看,它分析结果并试图迭代地滤除不太可能的数据点。在下一个迭代中,还原的数据集被馈送到量子计算机中。随着问题大小的减少,IQUC需要更少的量子迭代,这为共享计算环境提供了潜力。我们使用Qiskit实施IQUC并进行密集实验。结果表明,它最多将量子的消费量降低了66.2%。

Recent advances in quantum computing systems attract tremendous attention. Commercial companies, such as IBM, Amazon, and IonQ, have started to provide access to noisy intermediate-scale quantum computers. Researchers and entrepreneurs attempt to deploy their applications that aim to achieve a quantum speedup. Grover's algorithm and quantum phase estimation are the foundations of many applications with the potential for such a speedup. While these algorithms, in theory, obtain marvelous performance, deploying them on existing quantum devices is a challenging task. For example, quantum phase estimation requires extra qubits and a large number of controlled operations, which are impractical due to low-qubit and noisy hardware. To fully utilize the limited onboard qubits, we propose IQuCS, which aims at index searching and counting in a quantum-classical hybrid system. IQuCS is based on Grover's algorithm. From the problem size perspective, it analyzes results and tries to filter out unlikely data points iteratively. A reduced data set is fed to the quantum computer in the next iteration. With a reduction in the problem size, IQuCS requires fewer qubits iteratively, which provides the potential for a shared computing environment. We implement IQuCS with Qiskit and conduct intensive experiments. The results demonstrate that it reduces qubits consumption by up to 66.2%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源