论文标题
T2FPV:用于纠正行人轨迹预测中第一人称视图错误的数据集和方法
T2FPV: Dataset and Method for Correcting First-Person View Errors in Pedestrian Trajectory Prediction
论文作者
论文摘要
预测行人运动对于开发在拥挤的环境中相互作用的社会意识的机器人至关重要。尽管社交互动环境的自然视觉观点是以自然的看法,但大多数现有在轨迹预测中的现有作品纯粹是在自上而下的轨迹空间中进行了研究的。为了支持第一人称视图轨迹预测研究,我们提出了T2FPV,这是一种构建高保真的第一人称视图(FPV)数据集的方法,给定真实世界,自上而下的轨迹数据集;我们在ETH/UCY行人数据集上展示了我们的方法,以生成所有互动行人的以egipentric视觉数据,从而创建T2FPV-ETH数据集。在这种情况下,由于不完美的检测和跟踪,遮挡和视野(FOV)的限制,FPV特定的错误引起了。为了解决这些错误,我们提出了COFE,这是一个模块,该模块通过轨迹预测算法以端到端方式进一步完善了丢失数据的插图。我们的方法减少了这种FPV误差对下游预测性能的影响,平均位移误差降低了10%以上。为了促进研究参与,我们发布了T2FPV-ETH数据集和软件工具。
Predicting pedestrian motion is essential for developing socially-aware robots that interact in a crowded environment. While the natural visual perspective for a social interaction setting is an egocentric view, the majority of existing work in trajectory prediction therein has been investigated purely in the top-down trajectory space. To support first-person view trajectory prediction research, we present T2FPV, a method for constructing high-fidelity first-person view (FPV) datasets given a real-world, top-down trajectory dataset; we showcase our approach on the ETH/UCY pedestrian dataset to generate the egocentric visual data of all interacting pedestrians, creating the T2FPV-ETH dataset. In this setting, FPV-specific errors arise due to imperfect detection and tracking, occlusions, and field-of-view (FOV) limitations of the camera. To address these errors, we propose CoFE, a module that further refines the imputation of missing data in an end-to-end manner with trajectory forecasting algorithms. Our method reduces the impact of such FPV errors on downstream prediction performance, decreasing displacement error by more than 10% on average. To facilitate research engagement, we release our T2FPV-ETH dataset and software tools.