论文标题

恒定的主要运算符和在哪里找到它们:ABJ理论中BPS缺陷的奇怪情况

Constant primary operators and where to find them: The strange case of BPS defects in ABJ(M) theory

论文作者

Gorini, Nicola, Griguolo, Luca, Guerrini, Luigi, Penati, Silvia, Seminara, Domenico, Soresina, Paolo

论文摘要

我们研究了ABJ(M)理论中$ 1/2 $ bps Wilson线/循环定义的一维缺陷SCFT。我们表明,缺陷的超髓结构施加了增压的协变量超元素表示。利用这种协变量公式,我们证明了一个长的多重态的存在,其最高权重状态是恒定的超质量运算符。在弱耦合时,我们在扰动理论中研究了该操作员,并确认它获得了非平凡的异常维度。在强耦合时,我们猜想该操作员是对ADS $ _4 \ times \ times \ Mathbb {cp} _3 $的基本开放字符串波动的最低限制状态,围绕经典$ 1/2 $ bps解决方案。非常出乎意料的是,该操作员也出现在骨骼和费米尼克·威尔逊循环之间的共同体学等效性中。我们还讨论了在无限威尔逊线的扰动计算中产生的一些正则化微妙。

We investigate the one-dimensional defect SCFT defined on the $1/2$ BPS Wilson line/loop in ABJ(M) theory. We show that the supermatrix structure of the defect imposes a covariant supermatrix representation of the supercharges. Exploiting this covariant formulation, we prove the existence of a long multiplet whose highest weight state is a constant supermatrix operator. At weak coupling, we study this operator in perturbation theory and confirm that it acquires a non-trivial anomalous dimension. At strong coupling, we conjecture that this operator is dual to the lowest bound state of fluctuations of the fundamental open string in AdS$_4\times \mathbb{CP}_3$ around the classical $1/2$ BPS solution. Quite unexpectedly, this operator also arises in the cohomological equivalence between bosonic and fermionic Wilson loops. We also discuss some regularization subtleties arising in perturbative calculations on the infinite Wilson line.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源