论文标题

通过功能连通性,由多尺度图谱构建的层次图卷积网络用于脑部疾病诊断

Hierarchical Graph Convolutional Network Built by Multiscale Atlases for Brain Disorder Diagnosis Using Functional Connectivity

论文作者

Liu, Mianxin, Zhang, Han, Shi, Feng, Shen, Dinggang

论文摘要

功能磁共振成像(fMRI)的功能连通性网络(FCN)数据越来越多地用于诊断脑疾病。但是,最新的研究用来使用单个脑部分析地图集以一定的空间尺度建立FCN,这在层次级别上很大程度上忽略了跨不同空间尺度的功能相互作用。在这项研究中,我们提出了一个新型框架,以对脑部疾病诊断进行多尺度FCN分析。我们首先使用一组定义明确的多尺地图像来计算多尺度FCN。然后,我们利用多尺度图谱中各个区域之间的生物学意义上有意义的大脑分层关系,以跨多个空间尺度进行淋巴结池,即“ Atlas指导的池”。因此,我们提出了一个基于多尺度的层次图形卷积网络(MAHGCN),该网络构建在图形卷积的堆叠层和Atlas引导的池上,以全面地从多尺度FCN中详细提取诊断信息。对1792名受试者的神经成像数据进行的实验证明了我们提出的方法在诊断阿尔茨海默氏病(AD)中的有效性,AD的前驱阶段(即轻度认知障碍[MCI])以及自闭症谱系障碍(ASD)以及88.9%,78.6%,以及78.6%的准确性。与其他竞争方法相比,所有结果均显示出我们提出的方法的显着优势。这项研究不仅证明了使用深度学习增强的静息状态fMRI诊断的可行性,而且还强调,多尺度大脑层次结构中的功能相互作用值得探索并整合到深度学习网络体系结构中,以更好地理解脑疾病的神经病理学。

Functional connectivity network (FCN) data from functional magnetic resonance imaging (fMRI) is increasingly used for the diagnoses of brain disorders. However, state-of-the-art studies used to build the FCN using a single brain parcellation atlas at a certain spatial scale, which largely neglected functional interactions across different spatial scales in hierarchical manners. In this study, we propose a novel framework to perform multiscale FCN analysis for brain disorder diagnosis. We first use a set of well-defined multiscale atlases to compute multiscale FCNs. Then, we utilize biologically meaningful brain hierarchical relationships among the regions in multiscale atlases to perform nodal pooling across multiple spatial scales, namely "Atlas-guided Pooling". Accordingly, we propose a Multiscale-Atlases-based Hierarchical Graph Convolutional Network (MAHGCN), built on the stacked layers of graph convolution and the atlas-guided pooling, for a comprehensive extraction of diagnostic information from multiscale FCNs. Experiments on neuroimaging data from 1792 subjects demonstrate the effectiveness of our proposed method in the diagnoses of Alzheimer's disease (AD), the prodromal stage of AD (i.e., mild cognitive impairment [MCI]), as well as autism spectrum disorder (ASD), with accuracy of 88.9%, 78.6%, and 72.7% respectively. All results show significant advantages of our proposed method over other competing methods. This study not only demonstrates the feasibility of brain disorder diagnosis using resting-state fMRI empowered by deep learning, but also highlights that the functional interactions in the multiscale brain hierarchy are worth being explored and integrated into deep learning network architectures for better understanding the neuropathology of brain disorders.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源