论文标题

高原上方眼镜的导热率:第一原理理论和应用

Thermal conductivity of glasses above the plateau: first-principles theory and applications

论文作者

Simoncelli, Michele, Mauri, Francesco, Marzari, Nicola

论文摘要

迄今为止,从第一原理中预测玻璃的导热率已经是一个非常复杂的问题。实际上,过去的作品强调了使用已建立的Allen-Feldman或Green-Kubo配方实现长度和/或时间尺度的计算收敛方面的挑战,从而认可了一个原子模型,即原子模型包含数千种原子 - 因此,超越了玻璃的热导率的第一先方计算能力。此外,这些已建立的配方要么忽略了非谐度(Allen-Feldman),要么错过了原子振动的Bose-Einstein统计数据(Green Kubo),因此对这些影响的相关性留下了一个问题。在这里,我们提出了第一原理配方,以解决高原上方的玻璃的导热率,该电气电导率可以全面解释结构障碍,非谐度和量子Bose-Einstein统计。该协议将热传输的Wigner配方与收敛加速技术结合在一起,并在玻璃体二氧化硅中验证了第一原理计算和量子精确的机器学习的原子质潜力。我们表明,含有少于200个原子的玻璃体二氧化硅模型已经可以在宏观极限中重现导热率,并且非谐性无力地影响玻璃体二氧化硅的热传输。我们讨论了确定高温下电导率趋势的微观量,从而强调了计算与高原上方温度范围内的实验的一致,在该温度范围内,辐射效应仍然可以忽略不计(50 <t <450 K)。

Predicting the thermal conductivity of glasses from first principles has hitherto been a prohibitively complex problem. In fact, past works have highlighted challenges in achieving computational convergence with respect to length and/or time scales using either the established Allen-Feldman or Green-Kubo formulations, endorsing the concept that atomistic models containing thousands of atoms -- thus beyond the capabilities of first-principles calculations -- are needed to describe the thermal conductivity of glasses. In addition, these established formulations either neglect anharmonicity (Allen-Feldman) or miss the Bose-Einstein statistics of atomic vibrations (Green Kubo), thus leaving open the question on the relevance of these effects. Here, we present a first-principles formulation to address the thermal conductivity of glasses above the plateau, which can account comprehensively for the effects of structural disorder, anharmonicity, and quantum Bose-Einstein statistics. The protocol combines the Wigner formulation of thermal transport with convergence-acceleration techniques, and is validated in vitreous silica using both first-principles calculations and a quantum-accurate machine-learned interatomic potential. We show that models of vitreous silica containing less than 200 atoms can already reproduce the thermal conductivity in the macroscopic limit and that anharmonicity negligibly affects heat transport in vitreous silica. We discuss the microscopic quantities that determine the trend of the conductivity at high temperature, highlighting the agreement of the calculations with experiments in the temperature range above the plateau where radiative effects remain negligible (50<T <450 K).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源