论文标题

MLGWSC-1:第一个机器学习引力波搜索模拟数据挑战

MLGWSC-1: The first Machine Learning Gravitational-Wave Search Mock Data Challenge

论文作者

Schäfer, Marlin B., Zelenka, Ondřej, Nitz, Alexander H., Wang, He, Wu, Shichao, Guo, Zong-Kuan, Cao, Zhoujian, Ren, Zhixiang, Nousi, Paraskevi, Stergioulas, Nikolaos, Iosif, Panagiotis, Koloniari, Alexandra E., Tefas, Anastasios, Passalis, Nikolaos, Salemi, Francesco, Vedovato, Gabriele, Klimenko, Sergey, Mishra, Tanmaya, Brügmann, Bernd, Cuoco, Elena, Huerta, E. A., Messenger, Chris, Ohme, Frank

论文摘要

我们介绍了第一个机器学习引力波搜索模拟数据挑战(MLGWSC-1)的结果。在这一挑战中,参与的小组必须从二进制黑洞合并中识别出复杂性和持续时间逐渐嵌入在逐渐更现实的噪声中的引力波信号。 4个提供的数据集中的决赛包含O3A观察的真实噪声,并发出了20秒钟的持续时间,其中包含进动效应和高阶模式。我们介绍了在提交前从参与者未知的1个月的测试数据中得出的6个输入算法的平均灵敏度距离和运行时。其中4是机器学习算法。我们发现,最好的基于机器学习的算法能够以每月一个虚假的警报率(FAR)为1个,最多可实现基于过滤的高斯噪声的基于匹配过滤的生产分析的敏感距离的95%。相反,对于真实的噪音,领先的机器学习搜索获得了70%。为了更高的范围,敏感距离的差异差异到某些数据集上每月$ \ geq 200 $ fars $ \ geq 200美元的传统搜索算法的差异。我们的结果表明,当前的机器学习搜索算法可能已经在有限的参数区域中对某些生产设置有用。为了改善最新的技术,机器学习算法需要降低他们能够检测信号并将其有效性扩展到参数空间区域的错误警报率,在这些区域中,建模的搜索在计算上很昂贵。根据我们的发现,我们汇编了我们认为将机器学习搜索提升到重力波信号检测中的宝贵工具最重要的研究领域列表。

We present the results of the first Machine Learning Gravitational-Wave Search Mock Data Challenge (MLGWSC-1). For this challenge, participating groups had to identify gravitational-wave signals from binary black hole mergers of increasing complexity and duration embedded in progressively more realistic noise. The final of the 4 provided datasets contained real noise from the O3a observing run and signals up to a duration of 20 seconds with the inclusion of precession effects and higher order modes. We present the average sensitivity distance and runtime for the 6 entered algorithms derived from 1 month of test data unknown to the participants prior to submission. Of these, 4 are machine learning algorithms. We find that the best machine learning based algorithms are able to achieve up to 95% of the sensitive distance of matched-filtering based production analyses for simulated Gaussian noise at a false-alarm rate (FAR) of one per month. In contrast, for real noise, the leading machine learning search achieved 70%. For higher FARs the differences in sensitive distance shrink to the point where select machine learning submissions outperform traditional search algorithms at FARs $\geq 200$ per month on some datasets. Our results show that current machine learning search algorithms may already be sensitive enough in limited parameter regions to be useful for some production settings. To improve the state-of-the-art, machine learning algorithms need to reduce the false-alarm rates at which they are capable of detecting signals and extend their validity to regions of parameter space where modeled searches are computationally expensive to run. Based on our findings we compile a list of research areas that we believe are the most important to elevate machine learning searches to an invaluable tool in gravitational-wave signal detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源