论文标题

部分可观测时空混沌系统的无模型预测

Automatic and effective discovery of quantum kernels

论文作者

Incudini, Massimiliano, Bosco, Daniele Lizzio, Martini, Francesco, Grossi, Michele, Serra, Giuseppe, Di Pierro, Alessandra

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Quantum computing can empower machine learning models by enabling kernel machines to leverage quantum kernels for representing similarity measures between data. Quantum kernels are able to capture relationships in the data that are not efficiently computable on classical devices. However, there is no straightforward method to engineer the optimal quantum kernel for each specific use case. We present an approach to this problem, which employs optimization techniques, similar to those used in neural architecture search and AutoML, to automatically find an optimal kernel in a heuristic manner. To this purpose we define an algorithm for constructing a quantum circuit implementing the similarity measure as a combinatorial object, which is evaluated based on a cost function and then iteratively modified using a meta-heuristic optimization technique. The cost function can encode many criteria ensuring favorable statistical properties of the candidate solution, such as the rank of the Dynamical Lie Algebra. Importantly, our approach is independent of the optimization technique employed. The results obtained by testing our approach on a high-energy physics problem demonstrate that, in the best-case scenario, we can either match or improve testing accuracy with respect to the manual design approach, showing the potential of our technique to deliver superior results with reduced effort.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源