论文标题

部分可观测时空混沌系统的无模型预测

Scope of Pre-trained Language Models for Detecting Conflicting Health Information

论文作者

Gatto, Joseph, Basak, Madhusudan, Preum, Sarah M.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

An increasing number of people now rely on online platforms to meet their health information needs. Thus identifying inconsistent or conflicting textual health information has become a safety-critical task. Health advice data poses a unique challenge where information that is accurate in the context of one diagnosis can be conflicting in the context of another. For example, people suffering from diabetes and hypertension often receive conflicting health advice on diet. This motivates the need for technologies which can provide contextualized, user-specific health advice. A crucial step towards contextualized advice is the ability to compare health advice statements and detect if and how they are conflicting. This is the task of health conflict detection (HCD). Given two pieces of health advice, the goal of HCD is to detect and categorize the type of conflict. It is a challenging task, as (i) automatically identifying and categorizing conflicts requires a deeper understanding of the semantics of the text, and (ii) the amount of available data is quite limited. In this study, we are the first to explore HCD in the context of pre-trained language models. We find that DeBERTa-v3 performs best with a mean F1 score of 0.68 across all experiments. We additionally investigate the challenges posed by different conflict types and how synthetic data improves a model's understanding of conflict-specific semantics. Finally, we highlight the difficulty in collecting real health conflicts and propose a human-in-the-loop synthetic data augmentation approach to expand existing HCD datasets. Our HCD training dataset is over 2x bigger than the existing HCD dataset and is made publicly available on Github.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源