论文标题
部分可观测时空混沌系统的无模型预测
Learning Agile Flight Maneuvers: Deep SE(3) Motion Planning and Control for Quadrotors
论文作者
论文摘要
在混乱的环境中自动二次运动的敏捷飞行需要受到限制的运动计划和控制,但要受翻译和旋转动态的影响。传统的基于模型的方法通常需要复杂的设计和重型计算。在本文中,我们开发了一种基于深厚的增强学习方法,该方法解决了通过动态狭窄的大门飞行的挑战性任务。我们设计了一个模型预测控制器,其自适应跟踪参考参考由深神经网络(DNN)参数化。这些参考文献包括遍历时间和四型SE(3)遍历姿势,这些姿势鼓励机器人在各种初始条件下以最大的安全边缘飞行闸门。为了应对在高度动态环境中的训练困难,我们开发了一个增强的学习框架,以有效地训练DNN,从而很好地介绍了各种环境。此外,我们提出了一种二进制搜索算法,该算法允许在线适应(3)对动态门的引用。最后,通过广泛的高保真模拟,我们表明我们的方法对门的速度不确定性具有鲁棒性,并适应了不同的门轨迹和方向。
Agile flights of autonomous quadrotors in cluttered environments require constrained motion planning and control subject to translational and rotational dynamics. Traditional model-based methods typically demand complicated design and heavy computation. In this paper, we develop a novel deep reinforcement learning-based method that tackles the challenging task of flying through a dynamic narrow gate. We design a model predictive controller with its adaptive tracking references parameterized by a deep neural network (DNN). These references include the traversal time and the quadrotor SE(3) traversal pose that encourage the robot to fly through the gate with maximum safety margins from various initial conditions. To cope with the difficulty of training in highly dynamic environments, we develop a reinforce-imitate learning framework to train the DNN efficiently that generalizes well to diverse settings. Furthermore, we propose a binary search algorithm that allows online adaption of the SE(3) references to dynamic gates in real-time. Finally, through extensive high-fidelity simulations, we show that our approach is robust to the gate's velocity uncertainties and adaptive to different gate trajectories and orientations.