论文标题

基于查询的工业分析对知识图,并具有本体的重塑

Query-based Industrial Analytics over Knowledge Graphs with Ontology Reshaping

论文作者

Zheng, Zhuoxun, Zhou, Baifan, Zhou, Dongzhuoran, Cheng, Gong, Jiménez-Ruiz, Ernesto, Soylu, Ahmet, Kharlamo, Evgeny

论文摘要

包括设备诊断和异常检测在内的工业分析在很大程度上依赖于异质生产数据的整合。知识图(kgs)作为数据格式和本体作为统一数据模式是一个突出的解决方案,可提供高质量的数据集成以及一种方便,方便的标准化方式来交换数据并将分析应用程序分层。但是,它们之间高度不匹配的本体和工业数据的本体差异很差,因此自然导致低质量的公里,这阻碍了工业分析的采用和可扩展性。实际上,这样的公斤大大增加了为用户编写查询的培训时间,消耗大量存储以获取冗余信息,并且很难维护和更新。为了解决这个问题,我们提出了一种本体的重塑方法,将本体论转换为KG模式,以更好地反映基本数据,从而有助于构建更好的KG。在这张海报中,我们对正在进行的研究进行了初步讨论,并通过Bosch上关于现实世界行业数据的大量SPARQL查询来评估我们的方法,并讨论我们的发现。

Industrial analytics that includes among others equipment diagnosis and anomaly detection heavily relies on integration of heterogeneous production data. Knowledge Graphs (KGs) as the data format and ontologies as the unified data schemata are a prominent solution that offers high quality data integration and a convenient and standardised way to exchange data and to layer analytical applications over it. However, poor design of ontologies of high degree of mismatch between them and industrial data naturally lead to KGs of low quality that impede the adoption and scalability of industrial analytics. Indeed, such KGs substantially increase the training time of writing queries for users, consume high volume of storage for redundant information, and are hard to maintain and update. To address this problem we propose an ontology reshaping approach to transform ontologies into KG schemata that better reflect the underlying data and thus help to construct better KGs. In this poster we present a preliminary discussion of our on-going research, evaluate our approach with a rich set of SPARQL queries on real-world industry data at Bosch and discuss our findings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源