论文标题
MIDMS:基于示例的图像翻译的匹配交错扩散模型
MIDMs: Matching Interleaved Diffusion Models for Exemplar-based Image Translation
论文作者
论文摘要
我们提出了一种基于示例的图像翻译的新方法,称为匹配交错扩散模型(MIDMS)。该任务的大多数现有方法都是基于GAN的匹配 - 然后代理框架。但是,在此框架中,匹配跨域的语义匹配难度引起的匹配误差,例如草图和照片,可以很容易地传播到生成步骤,从而导致结果退化。由于扩散模型的最新成功克服了GAN的缺点,我们结合了扩散模型以克服这些局限性。具体而言,我们制定了一个基于扩散的匹配和生成框架,该框架通过将中间扭曲的中间扭曲馈入尖锐的过程,并将其变形以生成翻译的图像,从而在潜在空间中交织了跨域匹配和扩散步骤。此外,为了提高扩散过程的可靠性,我们使用周期一致性设计了一种置信度的过程,以在翻译过程中仅考虑自信区域。实验结果表明,我们的MIDM比最新方法产生的图像更合理。
We present a novel method for exemplar-based image translation, called matching interleaved diffusion models (MIDMs). Most existing methods for this task were formulated as GAN-based matching-then-generation framework. However, in this framework, matching errors induced by the difficulty of semantic matching across cross-domain, e.g., sketch and photo, can be easily propagated to the generation step, which in turn leads to degenerated results. Motivated by the recent success of diffusion models overcoming the shortcomings of GANs, we incorporate the diffusion models to overcome these limitations. Specifically, we formulate a diffusion-based matching-and-generation framework that interleaves cross-domain matching and diffusion steps in the latent space by iteratively feeding the intermediate warp into the noising process and denoising it to generate a translated image. In addition, to improve the reliability of the diffusion process, we design a confidence-aware process using cycle-consistency to consider only confident regions during translation. Experimental results show that our MIDMs generate more plausible images than state-of-the-art methods.