论文标题

使用傅立叶轮廓变形消除时间依赖性密度功能理论中的人工边界条件

Eliminating artificial boundary conditions in time-dependent density functional theory using Fourier contour deformation

论文作者

Kaye, Jason, Barnett, Alex, Greengard, Leslie, De Giovannini, Umberto, Rubio, Angel

论文摘要

我们提出了一种基于最近引入的傅立叶轮廓变形(FCD)方法的自由空间中时间依赖的Kohn-Sham方程的有效方法。对于在有界域外恒定的电势,FCD会直接在自由空间中的时间依赖性施罗丁格方程的高阶精确数值解,而无需人工边界条件。在许多现有的人工边界条件方案中,FCD与确切的非局部透明边界条件最相似,但它直接在任何维度上都在笛卡尔网格上工作,并且在快速傅立叶变换的顶部运行,而不是快速算法,用于应用非局部历史记录整体操作员。我们将FCD适应时间依赖性的密度功能理论(TDDFT),并描述一种简单的算法,以平稳并自动将远距离库仑样电势截断为有限制的域外的时间相关常数,以便可以使用FCD。这种方法消除了源自使用人造边界条件的误差,仅留下潜在截断的误差,该截断是受控制的,可以系统地减少。该方法可以准确模拟分子复合物中超局部非线性电子过程,其中结合状态和连续态之间的整体至关重要。我们证明了一个和二维模型的多电子TDDFT计算的吸收和强场光电子光谱的计算,并且与流行的复杂吸收势的方法相比,观察到获得高质量结果所需的计算结构域的大小显着降低。

We present an efficient method for propagating the time-dependent Kohn-Sham equations in free space, based on the recently introduced Fourier contour deformation (FCD) approach. For potentials which are constant outside a bounded domain, FCD yields a high-order accurate numerical solution of the time-dependent Schrodinger equation directly in free space, without the need for artificial boundary conditions. Of the many existing artificial boundary condition schemes, FCD is most similar to an exact nonlocal transparent boundary condition, but it works directly on Cartesian grids in any dimension, and runs on top of the fast Fourier transform rather than fast algorithms for the application of nonlocal history integral operators. We adapt FCD to time-dependent density functional theory (TDDFT), and describe a simple algorithm to smoothly and automatically truncate long-range Coulomb-like potentials to a time-dependent constant outside of a bounded domain of interest, so that FCD can be used. This approach eliminates errors originating from the use of artificial boundary conditions, leaving only the error of the potential truncation, which is controlled and can be systematically reduced. The method enables accurate simulations of ultrastrong nonlinear electronic processes in molecular complexes in which the inteference between bound and continuum states is of paramount importance. We demonstrate results for many-electron TDDFT calculations of absorption and strong field photoelectron spectra for one and two-dimensional models, and observe a significant reduction in the size of the computational domain required to achieve high quality results, as compared with the popular method of complex absorbing potentials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源