论文标题

布兰斯 - 迪克理论中的固定黑洞和星星,$λ> 0 $重新审视

Stationary black holes and stars in the Brans-Dicke theory with $Λ>0$ revisited

论文作者

Ali, Md Sabir, Bhattacharya, Sourav, Kaushal, Shagun

论文摘要

几年前显示的是,对于Brans-Dicke理论中固定的常规黑洞或星星解决方案,具有正宇宙常数$λ$,并在渐近区域中具有DE Sitter或宇宙学事件范围,不仅存在非客体野外配置,而且还没有逆Brans-dicke dicke dicke param $ $ $ω^^$ van vance。从本质上讲,这将该理论降低到了爱因斯坦的总体相对论。宇宙学视野存在的假设对于此证明至关重要。但是,由于Brans-Dicke Field $ ϕ $,因此直接与$λ$ - 能量量张量的$λ$ - $λ$在$ ϕ $的运动方程中充当源,这似乎是合理的:$ ϕ $可以强大,并且可以在很大的范围内筛选出$λ$,因此,又有一定的范围,因此可以恢复过来的范围。在这项工作中,我们在分析上认为,只要时空被认为没有任何裸曲率的奇异性,就没有这种选择。我们通过提供明确的数值计算来进一步支持这一结果。因此,我们得出的结论是,在存在正$λ$的情况下,无论是否强加了渐近设置的边界条件,在Brans-Dicke理论中,常规的固定黑洞甚至是星形解决方案都必须始终需要$ω^{ - 1} = 0 $,从而将理论降低到总体相关性。还指出了标准无头发定理的定性差异。

It was shown a few years back that for a stationary regular black hole or star solution in the Brans-Dicke theory with a positive cosmological constant $Λ$, endowed with a de Sitter or cosmological event horizon in the asymptotic region, not only there exists no non-trivial field configurations, but also the inverse Brans-Dicke parameter $ω^{-1}$ must be vanishing. This essentially reduces the theory to Einstein's General Relativity. The assumption of the existence of the cosmological horizon was crucial for this proof. However, since the Brans-Dicke field $ϕ$, couples directly to the $Λ$-term in the energy-momentum tensor as well as $Λ$ acts as a source in $ϕ$'s equation of motion, it seems reasonable to ask : can $ϕ$ become strong instead and screen the effect of $Λ$, at very large scales, so that the asymptotic de Sitter structure is replaced by some alternative, yet still acceptable boundary condition? In this work we analytically argue that no such alternative exists, as long as the spacetime is assumed to be free of any naked curvature singularity. We further support this result by providing explicit numerical computations. Thus we conclude that in the presence of a positive $Λ$, irrespective of whether the asymptotic de Sitter boundary condition is imposed or not, a regular stationary black hole or even a star solution in the Brans-Dicke theory always necessitates $ω^{-1}=0$, and thereby reducing the theory to General Relativity. The qualitative differences of this result with that of the standard no hair theorems are also pointed out.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源