论文标题
超越体素预测不确定性:识别您可以信任的脑病变
Beyond Voxel Prediction Uncertainty: Identifying brain lesions you can trust
论文作者
论文摘要
深度神经网络已成为3D医学图像自动分割的金标准方法。然而,由于缺乏对所提供的结果评估可理解的不确定性评估,他们被临床医生的全部接受仍然受到阻碍。量化其不确定性的大多数方法,例如流行的蒙特卡洛辍学物,仅限于在体素水平上预测的某种量度。除了与真正的医学不确定性不明确有关,这在临床上并不令人满意,因为大多数感兴趣的对象(例如脑部病变)是由素食组成的,其整体相关性可能不会简单地减少其个人不确定性的总和或平均值。在这项工作中,我们建议使用创新的图形神经网络方法超越体素评估,并从蒙特卡洛辍学模型的输出中训练。该网络允许融合体素不确定性的三个估计量:熵,方差和模型的信心;无论其形状或大小如何,都可以应用于任何病变。我们证明了我们方法对多发性硬化病变的任务的不确定性估计的优越性。
Deep neural networks have become the gold-standard approach for the automated segmentation of 3D medical images. Their full acceptance by clinicians remains however hampered by the lack of intelligible uncertainty assessment of the provided results. Most approaches to quantify their uncertainty, such as the popular Monte Carlo dropout, restrict to some measure of uncertainty in prediction at the voxel level. In addition not to be clearly related to genuine medical uncertainty, this is not clinically satisfying as most objects of interest (e.g. brain lesions) are made of groups of voxels whose overall relevance may not simply reduce to the sum or mean of their individual uncertainties. In this work, we propose to go beyond voxel-wise assessment using an innovative Graph Neural Network approach, trained from the outputs of a Monte Carlo dropout model. This network allows the fusion of three estimators of voxel uncertainty: entropy, variance, and model's confidence; and can be applied to any lesion, regardless of its shape or size. We demonstrate the superiority of our approach for uncertainty estimate on a task of Multiple Sclerosis lesions segmentation.