论文标题
在异质环境中分布式聚类学习的一次性框架
A One-shot Framework for Distributed Clustered Learning in Heterogeneous Environments
论文作者
论文摘要
本文提出了一种在异质环境中分布式学习的一系列沟通有效方法,其中用户从$ k $不同的分布之一中获取数据。在拟议的设置中,用户的分组(基于他们采样的数据分布)以及分布的基本统计属性是未知的。提出了一个单发的分布式群集学习方法(ODCL-$ \ MATHCAL {C} $),该家族由可允许的聚类算法$ \ MATHCAL {C} $进行参数,目的是在每个用户中学习真实的模型。可接受的聚类方法包括$ K $ -MEANS(KM)和凸聚类(CC),从而引起了拟议中的各种单发方法,例如ODCL-KM和ODCL-CC。根据用户的本地计算以及服务器的基于聚集的聚合步骤,该方法的提议的单发方法显示出可提供强大的学习保证。特别是,对于强烈凸出的问题,可以表明,只要每个用户的数据点的数量高于阈值,建议的方法就可以在样本量方面实现订单 - 最佳的于点于点误差(MSE)率。根据问题参数提供了阈值的明确表征。讨论了选择各种聚类方法(ODCL-CC,ODCL-KM)方面的权衡,并证明了对最先进的显着改善。数值实验说明了发现并证实了所提出方法的性能。
The paper proposes a family of communication efficient methods for distributed learning in heterogeneous environments in which users obtain data from one of $K$ different distributions. In the proposed setup, the grouping of users (based on the data distributions they sample), as well as the underlying statistical properties of the distributions, are apriori unknown. A family of One-shot Distributed Clustered Learning methods (ODCL-$\mathcal{C}$) is proposed, parametrized by the set of admissible clustering algorithms $\mathcal{C}$, with the objective of learning the true model at each user. The admissible clustering methods include $K$-means (KM) and convex clustering (CC), giving rise to various one-shot methods within the proposed family, such as ODCL-KM and ODCL-CC. The proposed one-shot approach, based on local computations at the users and a clustering based aggregation step at the server is shown to provide strong learning guarantees. In particular, for strongly convex problems it is shown that, as long as the number of data points per user is above a threshold, the proposed approach achieves order-optimal mean-squared error (MSE) rates in terms of the sample size. An explicit characterization of the threshold is provided in terms of problem parameters. The trade-offs with respect to selecting various clustering methods (ODCL-CC, ODCL-KM) are discussed and significant improvements over state-of-the-art are demonstrated. Numerical experiments illustrate the findings and corroborate the performance of the proposed methods.