论文标题
作为弗兰克·沃尔夫(Frank-Wolfe)的提升
Boosting as Frank-Wolfe
论文作者
论文摘要
一些增强算法(例如LPBoost,ERLPBoost和C-erlpBoost)旨在通过$ \ ell_1 $ -norm正则化解决软边距优化问题。 LPBoost在实践中迅速收敛到$ε$ - approximate解决方案,但众所周知,在最坏的情况下,$ω(m)$迭代会采取$ω(m)$迭代,其中$ m $是样本量。另一方面,保证ERLPBoost和C-erlpBoost在$ O(\ frac {1} {ε^2} \ ln \ ln \ frac {m}ν)$ itererations $ o(\ frac {1} {1} {ε^2} {ε^2} {1} {1} {1} {1} {1} {1} n $ itererations中,erlpboost和c-erlpboost可以收集到$ε$ -Appaptimate解决方案。但是,与LPBoost相比,每次迭代的计算非常高。 为了解决这个问题,我们提出了一个通用的增强方案,将Frank-Wolfe算法和任何次要算法结合在一起,并在迭代上互相切换。我们表明该方案保留与ERLPBoost和C-ErlpBoost相同的收敛保证。一个人可以合并任何二级算法以改进实践。该方案来自增强算法的统一视图,以进行软边缘优化。更具体地说,我们表明lpboost,erlpboost和c-erlpboost是弗兰克 - 沃尔夫算法的实例。在实际数据集的实验中,我们方案的实例之一利用了次级算法的更好更新,并与LPBoost相当地执行。
Some boosting algorithms, such as LPBoost, ERLPBoost, and C-ERLPBoost, aim to solve the soft margin optimization problem with the $\ell_1$-norm regularization. LPBoost rapidly converges to an $ε$-approximate solution in practice, but it is known to take $Ω(m)$ iterations in the worst case, where $m$ is the sample size. On the other hand, ERLPBoost and C-ERLPBoost are guaranteed to converge to an $ε$-approximate solution in $O(\frac{1}{ε^2} \ln \frac{m}ν)$ iterations. However, the computation per iteration is very high compared to LPBoost. To address this issue, we propose a generic boosting scheme that combines the Frank-Wolfe algorithm and any secondary algorithm and switches one to the other iteratively. We show that the scheme retains the same convergence guarantee as ERLPBoost and C-ERLPBoost. One can incorporate any secondary algorithm to improve in practice. This scheme comes from a unified view of boosting algorithms for soft margin optimization. More specifically, we show that LPBoost, ERLPBoost, and C-ERLPBoost are instances of the Frank-Wolfe algorithm. In experiments on real datasets, one of the instances of our scheme exploits the better updates of the secondary algorithm and performs comparably with LPBoost.