论文标题

迭代功能系统的分离条件,在Riemannian歧管上有重叠

Separation conditions for iterated function systems with overlaps on Riemannian manifolds

论文作者

Ngai, Sze-Man, Xu, Yangyang

论文摘要

我们在[Monatschch in Monatschch in Monatschch in [monatsch cons''制定了具有非负RICCI曲率的Riemannian歧管上的共形迭代功能系统的弱分离条件和有限类型条件。数学。 156(2009),325-355]。我们还获得了一个由迭代函数系统定义的自相似集的Hausdorff尺寸的公式,该系统满足有限类型的条件,从而概括了Jin-Yau [Comm。肛门。地理。 13(2005),821--843]和Lau-ngai [Adv。数学。 208(2007),647-671]在欧几里得空间上。此外,我们获得了图形自相似集的Hausdorff尺寸的公式,该集合由图形定向的迭代函数系统满足图形有限类型条件,从[非线性23(2010),23333--2350]中扩展了图形有限类型条件,扩展了ngai \ textit {et al。}的结果。

We formulate the weak separation condition and the finite type condition for conformal iterated function systems on Riemannian manifolds with nonnegative Ricci curvature, and generalize the main theorems by Lau \textit{et al.} in [Monatsch. Math. 156 (2009), 325-355]. We also obtain a formula for the Hausdorff dimension of a self-similar set defined by an iterated function system satisfying the finite type condition, generalizing a corresponding result by Jin-Yau [Comm. Anal. Geom. 13 (2005), 821--843] and Lau-Ngai [Adv. Math. 208 (2007), 647-671] on Euclidean spaces. Moreover, we obtain a formula for the Hausdorff dimension of a graph self-similar set generated by a graph-directed iterated function system satisfying the graph finite type condition, extending a result by Ngai \textit{et al.} in [Nonlinearity 23 (2010), 2333--2350].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源