论文标题
从3D CT的颅内出血自动分割
Automated segmentation of intracranial hemorrhages from 3D CT
论文作者
论文摘要
颅内出血细分挑战(实例2022)为研究人员提供了一个平台,将其解决方案与3D CTS的出血中风区域进行分割。在这项工作中,我们将解决方案描述为实例2022。我们使用2D分割网络,即来自Monai的Segresnet,在不重采样的情况下操作切片。最终提交是18个模型的合奏。我们的解决方案(NVAUTO团队名称)在骰子度量标准(0.721)和总排名第2方面获得了最高位置。它是使用auto3dseg实施的。
Intracranial hemorrhage segmentation challenge (INSTANCE 2022) offers a platform for researchers to compare their solutions to segmentation of hemorrhage stroke regions from 3D CTs. In this work, we describe our solution to INSTANCE 2022. We use a 2D segmentation network, SegResNet from MONAI, operating slice-wise without resampling. The final submission is an ensemble of 18 models. Our solution (team name NVAUTO) achieves the top place in terms of Dice metric (0.721), and overall rank 2. It is implemented with Auto3DSeg.