论文标题

统计适应的复发神经网络中的神经元加速学习动力

Interneurons accelerate learning dynamics in recurrent neural networks for statistical adaptation

论文作者

Lipshutz, David, Pehlevan, Cengiz, Chklovskii, Dmitri B.

论文摘要

大脑的早期感觉系统迅速适应了输入统计量的波动,这需要神经元之间的反复通信。从机械上讲,这种复发的通信通常是间接的,并由局部神经元介导。在这项工作中,我们探讨了与直接复发连接相比,通过中间神经元进行了复发通信的计算益处。为此,我们考虑了两个在数学上可拖动的循环线性神经网络,它们从统计上呈现了它们的输入 - 一个具有直接复发连接,另一个具有介导经常性通信的中间神经元。通过分析相应的连续突触动力学并在数值上模拟网络,我们表明,具有中间神经元的网络比初始化更强大,而与直接复发连接的网络相比,在网络中收敛的时间是与Interneurons网络中的突触动态的收敛时间(直接恢复连接)(resperrent Recurnent Connections。我们的结果表明,中间神经元在计算上对于快速适应更改输入统计的有用。有趣的是,具有中间神经元的网络是具有直接复发连接的网络的美白目标的过度参数化解决方案,因此我们的结果可以看作是在过度参数过度分析前馈线性线性神经网络中观察到的隐式加速现象的复发线性神经网络模拟。

Early sensory systems in the brain rapidly adapt to fluctuating input statistics, which requires recurrent communication between neurons. Mechanistically, such recurrent communication is often indirect and mediated by local interneurons. In this work, we explore the computational benefits of mediating recurrent communication via interneurons compared with direct recurrent connections. To this end, we consider two mathematically tractable recurrent linear neural networks that statistically whiten their inputs -- one with direct recurrent connections and the other with interneurons that mediate recurrent communication. By analyzing the corresponding continuous synaptic dynamics and numerically simulating the networks, we show that the network with interneurons is more robust to initialization than the network with direct recurrent connections in the sense that the convergence time for the synaptic dynamics in the network with interneurons (resp. direct recurrent connections) scales logarithmically (resp. linearly) with the spectrum of their initialization. Our results suggest that interneurons are computationally useful for rapid adaptation to changing input statistics. Interestingly, the network with interneurons is an overparameterized solution of the whitening objective for the network with direct recurrent connections, so our results can be viewed as a recurrent linear neural network analogue of the implicit acceleration phenomenon observed in overparameterized feedforward linear neural networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源