论文标题
通过多任务学习预测葡萄冷的耐心预测
Grape Cold Hardiness Prediction via Multi-Task Learning
论文作者
论文摘要
秋季和春季的寒冷温度有可能对葡萄藤和其他水果植物造成霜冻损害,这可能会大大降低收获产量。为了防止这些损失,农民在判断可能造成损坏时部署昂贵的霜冻缓解措施,例如洒水机,加热器和风车。然而,这种判断是具有挑战性的,因为植物的冷坚硬在整个休眠期都会发生变化,并且很难直接测量。这导致科学家开发了基于费力的野外测量数据,可以将其调整为不同的葡萄品种。在本文中,我们研究了深度学习模型是否可以基于在30年期间收集的数据来改善葡萄的冷坚硬预测。一个关键的挑战是,每个品种的数据量高度可变,有些品种只有少量。为此,我们研究了多任务学习来利用各种品种的数据,以提高个人品种的预测性能。我们评估了许多多任务学习方法,并表明,最高的性能方法能够显着改善单个品种的学习,并胜过大多数品种的当前最新科学模型。
Cold temperatures during fall and spring have the potential to cause frost damage to grapevines and other fruit plants, which can significantly decrease harvest yields. To help prevent these losses, farmers deploy expensive frost mitigation measures such as sprinklers, heaters, and wind machines when they judge that damage may occur. This judgment, however, is challenging because the cold hardiness of plants changes throughout the dormancy period and it is difficult to directly measure. This has led scientists to develop cold hardiness prediction models that can be tuned to different grape cultivars based on laborious field measurement data. In this paper, we study whether deep learning models can improve cold hardiness prediction for grapes based on data that has been collected over a 30-year time period. A key challenge is that the amount of data per cultivar is highly variable, with some cultivars having only a small amount. For this purpose, we investigate the use of multi-task learning to leverage data across cultivars in order to improve prediction performance for individual cultivars. We evaluate a number of multi-task learning approaches and show that the highest performing approach is able to significantly improve over learning for single cultivars and outperforms the current state-of-the-art scientific model for most cultivars.