论文标题

高分辨率极地KERR效应研究CSV $ {} _ 3 $ SB $ {} _ 5 $:时间逆转对称性的测试在收费订单过渡以下

High Resolution Polar Kerr Effect Studies of CsV${}_3$Sb${}_5$: Tests for Time Reversal Symmetry Breaking Below the Charge Order Transition

论文作者

Saykin, David R., Farhang, Camron, Kountz, Erik D., Chen, Dong, Ortiz, Brenden R., Shekhar, Chandra, Felser, Claudia, Wilson, Stephen D., Thomale, Ronny, Xia, Jing, Kapitulnik, Aharon

论文摘要

我们报告了高分辨率的高分辨率Kerr效应测量对CSV $ {} _ 3 $ SB $ {} _ 5 $单晶寻找自发时间逆转对称性的签名,低于$ t^** \ t^* \ 94 $ K的费用订单过渡。归因于在其路径上没有时间逆转对称性的破坏样本,干涉仪是完全相互的,我们发现在30纳米拉底座的设备的噪声层极限内没有可观察到的kerr效应。同时相干反射率测量结果证实了与KERR测量相同的光学量的电荷顺序转变的清晰度。在有限磁场上,我们观察到$ t^*$在Kerr信号中急剧发作,该速度一直持续到最低温度而没有趋势变化。由于1550 nm是一种能够捕获与电荷顺序过渡相互作用的材料光学特性的所有特性的能量,因此我们得出的结论是,在CSV $ {} _ 3 $ sb $ {}} _ {} _ 5 $中,时间反向对称性在csv $ {} _ 3 $ sb $ {} _ 3 $ sb $ {} _ 3 $ sb $ {} _ 5 $中极不可能。

We report high resolution polar Kerr effect measurements on CsV${}_3$Sb${}_5$ single crystals in search for signatures of spontaneous time reversal symmetry breaking below the charge order transition at $T^* \approx 94$ K. Utilizing two different versions of zero-area loop Sagnac interferometers operating at 1550 nm wavelength, each with the fundamental attribute that without a time reversal symmetry breaking sample at its path, the interferometer is perfectly reciprocal, we find no observable Kerr effect to within the noise floor limit of the apparatus at 30 nanoradians. Simultaneous coherent reflection ratio measurements confirm the sharpness of the charge order transition in the same optical volume as the Kerr measurements. At finite magnetic field we observe a sharp onset of a diamagnetic shift in the Kerr signal at $T^*$, which persists down to the lowest temperature without change in trend. Since 1550 nm is an energy that was shown to capture all features of the optical properties of the material that interact with the charge order transition, we are led to conclude that it is highly unlikely that time reversal symmetry is broken in the charge ordered state in CsV${}_3$Sb${}_5$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源