论文标题

回到啤酒空间上的杂弦:第一部分 - 激气量,2组和T-偶数

Back to Heterotic Strings on ALE Spaces: Part I -- Instantons, 2-groups and T-duality

论文作者

Del Zotto, Michele, Liu, Muyang, Oehlmann, Paul-Konstantin

论文摘要

在本文中,我们开始重新审视小弦理论(LSTS),该理论控制着瞬时异质性$ e_8 \ times e_8 $五脑探测啤酒奇异性的动态,并在Aspinwall和Morrison和Morrison以及Blum和Intiligator上建立并扩展了先前的结果。我们的重点是与无穷大的非平凡平坦连接的选择相对应的案例。对于异常的啤酒奇异性,后者特别有趣,在这种情况下,缺少I $'$的牛brane。我们确定这些模型的方法基于6D共形物质:我们将这些理论确定为概括的6D颤动。所有这些LST都具有更高的形式对称性,该形式与零形式的Poincaré对称性,R与对称性和其他全球对称性形成2组:R-对称性两组结构常数的匹配是T型的严格限制,这是T型的严格限制,我们将其与5D库型库的匹配相匹配,使得与5D库型的匹配相匹配,并将其匹配,以使圆圈的匹配相匹配。我们建议的LST。

In this paper we begin revisiting the little string theories (LSTs) which govern the dynamics of the instantonic heterotic $E_8 \times E_8$ five-branes probing ALE singularities, building on and extending previous results on the subject by Aspinwall and Morrison as well as Blum and Intriligator. Our focus are the cases corresponding to choices of non-trivial flat connections at infinity. The latter are in particular interesting for the exceptional ALE singularities, where a brane realization in Type I$'$ is lacking. Our approach to determine these models is based on 6d conformal matter: we determine these theories as generalized 6d quivers. All these LSTs have a higher-one form symmetry which forms a 2-group with the zero-form Poincaré symmetry, the R-symmetry and the other global symmetries: the matching of the R-symmetry two-group structure constant is a stringent constraint for T-dualities, which we use in combination with the matching of 5d Coulomb branches and flavor symmetries upon circle reduction, as a consistency check for the realization of the 6d LSTs we propose.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源