论文标题

FEDFOR:一阶正规化无状态的异构联合学习

FedFOR: Stateless Heterogeneous Federated Learning with First-Order Regularization

论文作者

Tian, Junjiao, Smith, James Seale, Kira, Zsolt

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Federated Learning (FL) seeks to distribute model training across local clients without collecting data in a centralized data-center, hence removing data-privacy concerns. A major challenge for FL is data heterogeneity (where each client's data distribution can differ) as it can lead to weight divergence among local clients and slow global convergence. The current SOTA FL methods designed for data heterogeneity typically impose regularization to limit the impact of non-IID data and are stateful algorithms, i.e., they maintain local statistics over time. While effective, these approaches can only be used for a special case of FL involving only a small number of reliable clients. For the more typical applications of FL where the number of clients is large (e.g., edge-device and mobile applications), these methods cannot be applied, motivating the need for a stateless approach to heterogeneous FL which can be used for any number of clients. We derive a first-order gradient regularization to penalize inconsistent local updates due to local data heterogeneity. Specifically, to mitigate weight divergence, we introduce a first-order approximation of the global data distribution into local objectives, which intuitively penalizes updates in the opposite direction of the global update. The end result is a stateless FL algorithm that achieves 1) significantly faster convergence (i.e., fewer communication rounds) and 2) higher overall converged performance than SOTA methods under non-IID data distribution. Importantly, our approach does not impose unrealistic limits on the client size, enabling learning from a large number of clients as is typical in most FL applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源