论文标题

部分可观测时空混沌系统的无模型预测

Benchmarking and Analyzing 3D Human Pose and Shape Estimation Beyond Algorithms

论文作者

Pang, Hui En, Cai, Zhongang, Yang, Lei, Zhang, Tianwei, Liu, Ziwei

论文摘要

3D人类的姿势和形状估计(又称“人网恢复”)取得了实质性进步。研究人员主要关注新算法的发展,而对涉及的其他关键因素的关注较少。这可能会导致最佳基线,从而阻碍了对新设计方法的公平和忠实评估。为了解决这个问题,这项工作从算法以外的三个探索性观点中提出了首个全面的基准测试研究。 1)数据集。对31个数据集的分析揭示了数据样本的不同影响:具有关键属性的数据集(即多样化的姿势,形状,相机特征,骨干特征)更有效。高质量数据集的战略选择和组合可以显着提高模型性能。 2)骨干。从CNN到变形金刚的10个骨干的实验表明,从接近任务中学到的知识很容易转移到人的网格恢复中。 3)培训策略。正确的增强技术和损失设计至关重要。通过上述发现,我们在具有相对简单的模型的3DPW测试集上实现了47.3 mm的PA-MPJPE。更重要的是,我们为算法的公平比较提供了强大的基准,以及将来建立有效培训配置的建议。代码库可从http://github.com/smplbody/hmr-benchmarks获得

3D human pose and shape estimation (a.k.a. "human mesh recovery") has achieved substantial progress. Researchers mainly focus on the development of novel algorithms, while less attention has been paid to other critical factors involved. This could lead to less optimal baselines, hindering the fair and faithful evaluations of newly designed methodologies. To address this problem, this work presents the first comprehensive benchmarking study from three under-explored perspectives beyond algorithms. 1) Datasets. An analysis on 31 datasets reveals the distinct impacts of data samples: datasets featuring critical attributes (i.e. diverse poses, shapes, camera characteristics, backbone features) are more effective. Strategical selection and combination of high-quality datasets can yield a significant boost to the model performance. 2) Backbones. Experiments with 10 backbones, ranging from CNNs to transformers, show the knowledge learnt from a proximity task is readily transferable to human mesh recovery. 3) Training strategies. Proper augmentation techniques and loss designs are crucial. With the above findings, we achieve a PA-MPJPE of 47.3 mm on the 3DPW test set with a relatively simple model. More importantly, we provide strong baselines for fair comparisons of algorithms, and recommendations for building effective training configurations in the future. Codebase is available at http://github.com/smplbody/hmr-benchmarks

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源